These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 20186909)

  • 1. Cellulose conversion to isosorbide in molten salt hydrate media.
    de Almeida RM; Li J; Nederlof C; O'Connor P; Makkee M; Moulijn JA
    ChemSusChem; 2010 Mar; 3(3):325-8. PubMed ID: 20186909
    [No Abstract]   [Full Text] [Related]  

  • 2. In situ NMR spectroscopy: inulin biomass conversion in ZnCl₂ molten salt hydrate medium-SnCl₄ addition controls product distribution.
    Wang Y; Pedersen CM; Qiao Y; Deng T; Shi J; Hou X
    Carbohydr Polym; 2015 Jan; 115():439-43. PubMed ID: 25439916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Bio-oil production from biomass pyrolysis in molten salt].
    Ji D; Cai T; Ai N; Yu F; Jiang H; Ji J
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):475-81. PubMed ID: 21650030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water.
    Deng T; Cui X; Qi Y; Wang Y; Hou X; Zhu Y
    Chem Commun (Camb); 2012 Jun; 48(44):5494-6. PubMed ID: 22534980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt.
    Schestakow M; Karadagli I; Ratke L
    Carbohydr Polym; 2016 Feb; 137():642-649. PubMed ID: 26686174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic Liquid Character of Zinc Chloride Hydrates Define Solvent Characteristics that Afford the Solubility of Cellulose.
    Sen S; Losey BP; Gordon EE; Argyropoulos DS; Martin JD
    J Phys Chem B; 2016 Feb; 120(6):1134-41. PubMed ID: 26800761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct conversion of cellulose to 1-(furan-2-yl)-2-hydroxyethanone in zinc chloride solution under microwave irradiation.
    Yang L; Li G; Yang F; Zhang SM; Fan HX; Lv XN
    Carbohydr Res; 2011 Oct; 346(14):2304-7. PubMed ID: 21820105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of metal salts on the decomposition of sweet sorghum bagasse in flow-through liquid hot water.
    Yu Q; Zhuang X; Yuan Z; Qi W; Wang Q; Tan X
    Bioresour Technol; 2011 Feb; 102(3):3445-50. PubMed ID: 21071212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate.
    Sun P; Long X; He H; Xia C; Li F
    ChemSusChem; 2013 Nov; 6(11):2190-7. PubMed ID: 24115374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of inorganic salts on the primary pyrolysis products of cellulose.
    Patwardhan PR; Satrio JA; Brown RC; Shanks BH
    Bioresour Technol; 2010 Jun; 101(12):4646-55. PubMed ID: 20171877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic hydrolysis of cellulose dissolved in N-methyl morpholine oxide/water solutions.
    Ramakrishnan S; Collier J; Oyetunji R; Stutts B; Burnett R
    Bioresour Technol; 2010 Jul; 101(13):4965-70. PubMed ID: 19793649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile preparation of all-cellulose composites from softwood, hardwood, and agricultural straw cellulose by a simple route of partial dissolution.
    Tang X; Liu G; Zhang H; Gao X; Li M; Zhang S
    Carbohydr Polym; 2021 Mar; 256():117591. PubMed ID: 33483077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon.
    Op de Beeck B; Geboers J; Van de Vyver S; Van Lishout J; Snelders J; Huijgen WJ; Courtin CM; Jacobs PA; Sels BF
    ChemSusChem; 2013 Jan; 6(1):199-208. PubMed ID: 23307750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose.
    Boussarsar H; Rogé B; Mathlouthi M
    Bioresour Technol; 2009 Dec; 100(24):6537-42. PubMed ID: 19664914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions.
    Asghari FS; Yoshida H
    Carbohydr Res; 2010 Jan; 345(1):124-31. PubMed ID: 19892325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved thermal stability of regenerated cellulose films from corn (Zea mays) stalk pith using facile preparation with low-concentration zinc chloride dissolving.
    Zhang H; Chen K; Gao X; Han Q; Peng L
    Carbohydr Polym; 2019 Aug; 217():190-198. PubMed ID: 31079676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose.
    Yu Q; Zhuang X; Yuan Z; Wang Q; Qi W; Wang W; Zhang Y; Xu J; Xu H
    Bioresour Technol; 2010 Jul; 101(13):4895-9. PubMed ID: 20004094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing effectiveness of rhamnolipid biosurfactant with a quaternary ammonium salt surfactant for hydrate anti-agglomeration.
    York JD; Firoozabadi A
    J Phys Chem B; 2008 Jan; 112(3):845-51. PubMed ID: 18171051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic liquids: the link to high-temperature molten salts?
    El Abedin SZ; Endres F
    Acc Chem Res; 2007 Nov; 40(11):1106-13. PubMed ID: 17521159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolytic sugars from cellulosic biomass.
    Kuzhiyil N; Dalluge D; Bai X; Kim KH; Brown RC
    ChemSusChem; 2012 Nov; 5(11):2228-36. PubMed ID: 22976992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.