These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20187144)

  • 1. Building the central complex in Drosophila: the generation and development of distinct neural subsets.
    Young JM; Armstrong JD
    J Comp Neurol; 2010 May; 518(9):1525-41. PubMed ID: 20187144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lineage-based analysis of the development of the central complex of the Drosophila brain.
    Pereanu W; Younossi-Hartenstein A; Lovick J; Spindler S; Hartenstein V
    J Comp Neurol; 2011 Mar; 519(4):661-89. PubMed ID: 21246549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the adult central complex in Drosophila: organization of distinct neuronal subsets.
    Young JM; Armstrong JD
    J Comp Neurol; 2010 May; 518(9):1500-24. PubMed ID: 20187142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse neuronal lineages make stereotyped contributions to the Drosophila locomotor control center, the central complex.
    Yang JS; Awasaki T; Yu HH; He Y; Ding P; Kao JC; Lee T
    J Comp Neurol; 2013 Aug; 521(12):2645-Spc1. PubMed ID: 23696496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain.
    Izergina N; Balmer J; Bello B; Reichert H
    Neural Dev; 2009 Dec; 4():44. PubMed ID: 20003348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crucial roles of Pox neuro in the developing ellipsoid body and antennal lobes of the Drosophila brain.
    Minocha S; Boll W; Noll M
    PLoS One; 2017; 12(4):e0176002. PubMed ID: 28441464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early-born neurons in type II neuroblast lineages establish a larval primordium and integrate into adult circuitry during central complex development in Drosophila.
    Riebli N; Viktorin G; Reichert H
    Neural Dev; 2013 Apr; 8():6. PubMed ID: 23618231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broad Complex isoforms have unique distributions during central nervous system metamorphosis in Drosophila melanogaster.
    Spokony RF; Restifo LL
    J Comp Neurol; 2009 Nov; 517(1):15-36. PubMed ID: 19711379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arborization pattern of engrailed-positive neural lineages reveal neuromere boundaries in the Drosophila brain neuropil.
    Kumar A; Fung S; Lichtneckert R; Reichert H; Hartenstein V
    J Comp Neurol; 2009 Nov; 517(1):87-104. PubMed ID: 19711412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical neuroanatomy of the Drosophila central complex: distribution of multiple neuropeptides in relation to neurotransmitters.
    Kahsai L; Winther AM
    J Comp Neurol; 2011 Feb; 519(2):290-315. PubMed ID: 21165976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations.
    Omoto JJ; Keleş MF; Nguyen BM; Bolanos C; Lovick JK; Frye MA; Hartenstein V
    Curr Biol; 2017 Apr; 27(8):1098-1110. PubMed ID: 28366740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster.
    Lee G; Kim KM; Kikuno K; Wang Z; Choi YJ; Park JH
    Cell Tissue Res; 2008 Mar; 331(3):659-73. PubMed ID: 18087727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the anterior visual input pathway to the Drosophila central complex.
    Lovick JK; Omoto JJ; Ngo KT; Hartenstein V
    J Comp Neurol; 2017 Nov; 525(16):3458-3475. PubMed ID: 28675433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory.
    Pan Y; Zhou Y; Guo C; Gong H; Gong Z; Liu L
    Learn Mem; 2009 May; 16(5):289-95. PubMed ID: 19389914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for juvenile hormone in the prepupal development of Drosophila melanogaster.
    Riddiford LM; Truman JW; Mirth CK; Shen YC
    Development; 2010 Apr; 137(7):1117-26. PubMed ID: 20181742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain.
    Spindler SR; Ortiz I; Fung S; Takashima S; Hartenstein V
    Dev Biol; 2009 Oct; 334(2):355-68. PubMed ID: 19646433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits.
    Wolff T; Iyer NA; Rubin GM
    J Comp Neurol; 2015 May; 523(7):997-1037. PubMed ID: 25380328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bursicon functions within the Drosophila CNS to modulate wing expansion behavior, hormone secretion, and cell death.
    Peabody NC; Diao F; Luan H; Wang H; Dewey EM; Honegger HW; White BH
    J Neurosci; 2008 Dec; 28(53):14379-91. PubMed ID: 19118171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular configuration of single octopamine neurons in Drosophila.
    Busch S; Tanimoto H
    J Comp Neurol; 2010 Jun; 518(12):2355-64. PubMed ID: 20437532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GAL4 enhancer trap strains with reporter gene expression during the development of adult brain in Drosophila melanogaster.
    Venkatesh CR; Shyamala BV
    J Genet; 2010 Dec; 89(4):e38-42. PubMed ID: 21273707
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.