BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 20187149)

  • 1. Retinal photoreceptor arrangement, SWS1 and LWS opsin sequence, and electroretinography in the South American marsupial Thylamys elegans (Waterhouse, 1839).
    Palacios AG; Bozinovic F; Vielma A; Arrese CA; Hunt DM; Peichl L
    J Comp Neurol; 2010 May; 518(9):1589-602. PubMed ID: 20187149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinal photoreceptors of two subterranean tuco-tuco species (Rodentia, Ctenomys): morphology, topography, and spectral sensitivity.
    Schleich CE; Vielma A; Glösmann M; Palacios AG; Peichl L
    J Comp Neurol; 2010 Oct; 518(19):4001-15. PubMed ID: 20737597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pronounced heritable variation and limited phenotypic plasticity in visual pigments and opsin expression of threespine stickleback photoreceptors.
    Flamarique IN; Cheng CL; Bergstrom C; Reimchen TE
    J Exp Biol; 2013 Feb; 216(Pt 4):656-67. PubMed ID: 23077162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of photoreceptor cell types in the little brown bat Myotis lucifugus (Vespertilionidae).
    Feller KD; Lagerholm S; Clubwala R; Silver MT; Haughey D; Ryan JM; Loew ER; Deutschlander ME; Kenyon KL
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Dec; 154(4):412-8. PubMed ID: 19720154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, Octodontidae).
    Peichl L; Chavez AE; Ocampo A; Mena W; Bozinovic F; Palacios AG
    J Comp Neurol; 2005 Jun; 486(3):197-208. PubMed ID: 15844175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cone visual pigments in two species of South American marsupials.
    Hunt DM; Chan J; Carvalho LS; Hokoc JN; Ferguson MC; Arrese CA; Beazley LD
    Gene; 2009 Mar; 433(1-2):50-5. PubMed ID: 19133321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptations to an extreme environment: retinal organisation and spectral properties of photoreceptors in Antarctic notothenioid fish.
    Pointer MA; Cheng CH; Bowmaker JK; Parry JW; Soto N; Jeffery G; Cowing JA; Hunt DM
    J Exp Biol; 2005 Jun; 208(Pt 12):2363-76. PubMed ID: 15939776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development.
    Cheng CL; Flamarique IN
    J Exp Biol; 2007 Dec; 210(Pt 23):4123-35. PubMed ID: 18025012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids.
    Parry JW; Carleton KL; Spady T; Carboo A; Hunt DM; Bowmaker JK
    Curr Biol; 2005 Oct; 15(19):1734-9. PubMed ID: 16213819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreceptor distribution in the retina of adult Pacific salmon: corner cones express blue opsin.
    Cheng CL; Flamarique IN
    Vis Neurosci; 2007; 24(3):269-76. PubMed ID: 17592670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S cones: Evolution, retinal distribution, development, and spectral sensitivity.
    Hunt DM; Peichl L
    Vis Neurosci; 2014 Mar; 31(2):115-38. PubMed ID: 23895771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreceptor topography and spectral sensitivity in the common brushtail possum (Trichosurus vulpecula).
    Vlahos LM; Knott B; Valter K; Hemmi JM
    J Comp Neurol; 2014 Oct; 522(15):3423-36. PubMed ID: 24737644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cone photoreceptor diversity in the retinas of fruit bats (megachiroptera).
    Müller B; Goodman SM; Peichl L
    Brain Behav Evol; 2007; 70(2):90-104. PubMed ID: 17522478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning of cone opsin genes and their expression in the retina of a smelt, Ayu (Plecoglossus altivelis, Teleostei).
    Minamoto T; Shimizu I
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):197-205. PubMed ID: 15649766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri.
    Shand J; Davies WL; Thomas N; Balmer L; Cowing JA; Pointer M; Carvalho LS; Trezise AE; Collin SP; Beazley LD; Hunt DM
    J Exp Biol; 2008 May; 211(Pt 9):1495-503. PubMed ID: 18424684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes.
    Hauzman E; Bonci DMO; Suárez-Villota EY; Neitz M; Ventura DF
    BMC Evol Biol; 2017 Dec; 17(1):249. PubMed ID: 29228925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The opossum photoreceptors--a model for evolutionary trends in early mammalian retina.
    Ahnelt PK; Hokoç JN; Röhlich P
    Rev Bras Biol; 1996 Dec; 56 Su 1 Pt 2():199-207. PubMed ID: 9394501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral tuning of the long wavelength-sensitive cone pigment in four Australian marsupials.
    Arrese CA; Beazley LD; Ferguson MC; Oddy A; Hunt DM
    Gene; 2006 Oct; 381():13-7. PubMed ID: 16859843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.
    Jacobs GH
    Vis Neurosci; 2013 Mar; 30(1-2):39-53. PubMed ID: 23286388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.