These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 2018761)
1. Mechanisms for the facilitated diffusion of substrates across cell membranes. Carruthers A Biochemistry; 1991 Apr; 30(16):3898-906. PubMed ID: 2018761 [TBL] [Abstract][Full Text] [Related]
2. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport. Helgerson AL; Carruthers A Biochemistry; 1989 May; 28(11):4580-94. PubMed ID: 2765504 [TBL] [Abstract][Full Text] [Related]
3. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK; Heard KS; Carruthers A Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697 [TBL] [Abstract][Full Text] [Related]
4. L-Leucine transport in human red blood cells: a detailed kinetic analysis. Rosenberg R J Membr Biol; 1981; 62(1-2):79-93. PubMed ID: 7277478 [TBL] [Abstract][Full Text] [Related]
5. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate. Carruthers A Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945 [TBL] [Abstract][Full Text] [Related]
6. The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate. ter Kuile BH; Cook M Biochim Biophys Acta; 1994 Aug; 1193(2):235-9. PubMed ID: 8054344 [TBL] [Abstract][Full Text] [Related]
7. Presteady-state kinetics and carrier-mediated transport: a theoretical analysis. Wierzbicki W; Berteloot A; Roy G J Membr Biol; 1990 Jul; 117(1):11-27. PubMed ID: 2402006 [TBL] [Abstract][Full Text] [Related]
8. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes. Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539 [TBL] [Abstract][Full Text] [Related]
9. An experimental test for cyclic versus linear transport models. The mechanisms of glucose and choline transport in erythrocytes. Krupka RM; Devés R J Biol Chem; 1981 Jun; 256(11):5410-6. PubMed ID: 7240146 [TBL] [Abstract][Full Text] [Related]
10. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B. Carruthers A; Helgerson AL Biochemistry; 1991 Apr; 30(16):3907-15. PubMed ID: 2018762 [TBL] [Abstract][Full Text] [Related]
11. A new approach in the kinetics of biological transport. The potential of reversible inhibition studies. Devés R; Krupka RM Biochim Biophys Acta; 1978 Jun; 510(1):186-200. PubMed ID: 667035 [TBL] [Abstract][Full Text] [Related]
12. The transport of chloroquine across human erythrocyte membranes is mediated by a simple symmetric carrier. Yayon A; Ginsburg H Biochim Biophys Acta; 1982 Apr; 686(2):197-203. PubMed ID: 7082662 [TBL] [Abstract][Full Text] [Related]
13. Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers. Ginsburg H Biochim Biophys Acta; 1978 Jan; 506(1):119-35. PubMed ID: 620020 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of nucleoside transport in human erythrocytes. Alterations during blood preservation. Plagemann PG; Wohlhueter RM Biochim Biophys Acta; 1984 Nov; 778(1):176-84. PubMed ID: 6498185 [TBL] [Abstract][Full Text] [Related]
16. The physico-chemical mechanism of mediated transport. I. Facilitated diffusion. Massaldi HA; Borzi CH J Theor Biol; 1984 Feb; 106(4):537-57. PubMed ID: 6708570 [TBL] [Abstract][Full Text] [Related]
17. Models for the active transport of cations...the steady-state analysis. Stein WD; Honig B Mol Cell Biochem; 1977 Mar; 15(1):27-44. PubMed ID: 865483 [TBL] [Abstract][Full Text] [Related]
18. NMR spin exchange kinetics at equilibrium in membrane transport and enzyme systems. Kuchel PW; Chapman BE J Theor Biol; 1983 Dec; 105(4):569-89. PubMed ID: 6672473 [TBL] [Abstract][Full Text] [Related]
19. The relationship between substrate dissociation constants derived from transport experiments and from equilibrium binding assays. Implications of the conventional carrier model. Devés R; Krupka RM Biochim Biophys Acta; 1984 Jan; 769(2):455-60. PubMed ID: 6696893 [TBL] [Abstract][Full Text] [Related]
20. A general kinetic analysis of transport. Tests of the carrier model based on predicted relations among experimental parameters. Devés R; Krupka RM Biochim Biophys Acta; 1979 Oct; 556(3):533-47. PubMed ID: 486476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]