These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 20187614)

  • 1. Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters.
    Antheunis H; van der Meer JC; de Geus M; Heise A; Koning CE
    Biomacromolecules; 2010 Apr; 11(4):1118-24. PubMed ID: 20187614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA).
    Loo SC; Ooi CP; Wee SH; Boey YC
    Biomaterials; 2005 Jun; 26(16):2827-33. PubMed ID: 15603778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide): effects of polymer structure on in vitro degradation behaviour.
    Unger F; Wittmar M; Morell F; Kissel T
    Biomaterials; 2008 May; 29(13):2007-14. PubMed ID: 18262641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of paclitaxel on hydrolytic degradation in matrices obtained from aliphatic polyesters and polyester carbonates.
    Musiał-Kulik M; Kasperczyk J; Jelonek K; Dobrzyński P; Gebarowska K; Janeczek H; Libera M
    Acta Pol Pharm; 2010; 67(6):664-8. PubMed ID: 21229883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for hydrolytic degradation and erosion of biodegradable polymers.
    Sevim K; Pan J
    Acta Biomater; 2018 Jan; 66():192-199. PubMed ID: 29128536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic, alkaline, and autocatalytic degradation of poly(L-lactic acid): effects of biaxial orientation.
    Tsuji H; Ogiwara M; Saha SK; Sakaki T
    Biomacromolecules; 2006 Jan; 7(1):380-7. PubMed ID: 16398539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of diisocyanate linkers on the degradation characteristics of copolyester urethanes as potential drug carrier matrices.
    Mathew S; Baudis S; Neffe AT; Behl M; Wischke C; Lendlein A
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt A):18-26. PubMed ID: 25828207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer chain scission, oligomer production and diffusion: a two-scale model for degradation of bioresorbable polyesters.
    Han X; Pan J
    Acta Biomater; 2011 Feb; 7(2):538-47. PubMed ID: 20832507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro degradation of glycine/DL-lactic acid copolymers.
    Helder J; Dijkstra PJ; Feijen J
    J Biomed Mater Res; 1990 Aug; 24(8):1005-20. PubMed ID: 2394759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization.
    Dånmark S; Finne-Wistrand A; Schander K; Hakkarainen M; Arvidson K; Mustafa K; Albertsson AC
    Acta Biomater; 2011 May; 7(5):2035-46. PubMed ID: 21316490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of lactide monomer on the hydrolytic degradation of poly(lactide-co-glycolide) 85L/15G.
    Paakinaho K; Heino H; Väisänen J; Törmälä P; Kellomäki M
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1283-90. PubMed ID: 21783137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo degradation studies of a novel linear copolymer of lactide and ethylphosphate.
    Chaubal MV; Su G; Spicer E; Dang W; Branham KE; English JP; Zhao Z
    J Biomater Sci Polym Ed; 2003; 14(1):45-61. PubMed ID: 12635770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical study of PLA-PCL fibers during in vitro degradation.
    Vieira AC; Vieira JC; Ferra JM; Magalhães FD; Guedes RM; Marques AT
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):451-60. PubMed ID: 21316633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive high-frequency acoustic microscopy for 3D visualization of microstructure and estimation of elastic properties during hydrolytic degradation of lactide and ε-caprolactone polymers.
    Morokov ES; Demina VA; Sedush NG; Kalinin KT; Khramtsova EA; Dmitryakov PV; Bakirov AV; Grigoriev TE; Levin VM; Chvalun SN
    Acta Biomater; 2020 Jun; 109():61-72. PubMed ID: 32294555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide).
    Zweers ML; Engbers GH; Grijpma DW; Feijen J
    J Control Release; 2004 Dec; 100(3):347-56. PubMed ID: 15567501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reaction-diffusion framework for hydrolytic degradation of amorphous polymers based on a discrete chain scission model.
    Pan Z; Brassart L
    Acta Biomater; 2023 Sep; 167():361-373. PubMed ID: 37343906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Polymer Composition on the Hydrolytic and Enzymatic Degradation of Polyesters and Their Block Copolymers with PDMAEMA.
    Kupczak M; Mielańczyk A; Neugebauer D
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo.
    Pitt CG; Gratzl MM; Kimmel GL; Surles J; Schindler A
    Biomaterials; 1981 Oct; 2(4):215-20. PubMed ID: 7326315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA.
    Loo SC; Tan HT; Ooi CP; Boey YC
    Acta Biomater; 2006 May; 2(3):287-96. PubMed ID: 16701888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.