These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 2018762)
1. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B. Carruthers A; Helgerson AL Biochemistry; 1991 Apr; 30(16):3907-15. PubMed ID: 2018762 [TBL] [Abstract][Full Text] [Related]
2. The human erythrocyte sugar transporter presents two sugar import sites. Hamill S; Cloherty EK; Carruthers A Biochemistry; 1999 Dec; 38(51):16974-83. PubMed ID: 10606533 [TBL] [Abstract][Full Text] [Related]
3. Equilibrium ligand binding to the human erythrocyte sugar transporter. Evidence for two sugar-binding sites per carrier. Helgerson AL; Carruthers A J Biol Chem; 1987 Apr; 262(12):5464-75. PubMed ID: 3571218 [TBL] [Abstract][Full Text] [Related]
4. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites. Sultzman LA; Carruthers A Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483 [TBL] [Abstract][Full Text] [Related]
6. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding. Coderre PE; Cloherty EK; Zottola RJ; Carruthers A Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647 [TBL] [Abstract][Full Text] [Related]
7. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate. Carruthers A Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945 [TBL] [Abstract][Full Text] [Related]
8. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Cloherty EK; Levine KB; Carruthers A Biochemistry; 2001 Dec; 40(51):15549-61. PubMed ID: 11747430 [TBL] [Abstract][Full Text] [Related]
9. ATP regulation of the human red cell sugar transporter. Carruthers A J Biol Chem; 1986 Aug; 261(24):11028-37. PubMed ID: 3733746 [TBL] [Abstract][Full Text] [Related]
10. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site. Ojelabi OA; Lloyd KP; Simon AH; De Zutter JK; Carruthers A J Biol Chem; 2016 Dec; 291(52):26762-26772. PubMed ID: 27836974 [TBL] [Abstract][Full Text] [Related]
11. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK; Heard KS; Carruthers A Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697 [TBL] [Abstract][Full Text] [Related]
12. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes. Albert SG Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046 [TBL] [Abstract][Full Text] [Related]
13. Cytochalasin B and the kinetics of inhibition of biological transport: a case of asymmetric binding to the glucose carrier. Devés R; Krupka RM Biochim Biophys Acta; 1978 Jul; 510(2):339-48. PubMed ID: 667049 [TBL] [Abstract][Full Text] [Related]
14. Reversible in vitro decrease of L-tyrosine and L-tryptophan influx across the human erythrocyte membrane induced by cytochalasin B, the specific inhibitor of D-glucose transport. Widmer J; Raffin Y; Gaillard JM; Bovier P; Tissot R Neuropsychobiology; 1990-1991; 24(2):67-73. PubMed ID: 2134113 [TBL] [Abstract][Full Text] [Related]
15. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site. Sage JM; Cura AJ; Lloyd KP; Carruthers A Am J Physiol Cell Physiol; 2015 May; 308(10):C827-34. PubMed ID: 25715702 [TBL] [Abstract][Full Text] [Related]
16. Pre-steady-state uptake of D-glucose by the human erythrocyte is inconsistent with a circulating carrier mechanism. Naftalin RJ Biochim Biophys Acta; 1988 Dec; 946(2):431-8. PubMed ID: 3207758 [TBL] [Abstract][Full Text] [Related]
17. Cytochalasin B binding sites and glucose transport carrier in human erythrocyte ghosts. Jung CY; Rampal AL J Biol Chem; 1977 Aug; 252(15):5456-63. PubMed ID: 885863 [No Abstract] [Full Text] [Related]
18. Equilibria and kinetics of ligand binding to the human erythrocyte glucose transporter. Evidence for an alternating conformation model for transport. Gorga FR; Lienhard GE Biochemistry; 1981 Sep; 20(18):5108-13. PubMed ID: 7295669 [TBL] [Abstract][Full Text] [Related]
19. Monitoring conformational change in the human erythrocyte glucose carrier: use of a fluorescent probe attached to an exofacial carrier sulfhydryl. May JM; Beechem JM Biochemistry; 1993 Mar; 32(11):2907-15. PubMed ID: 8457556 [TBL] [Abstract][Full Text] [Related]
20. A proton NMR study of the mechanism of the erythrocyte glucose transporter. Wang JF; Falke JJ; Chan SI Proc Natl Acad Sci U S A; 1986 May; 83(10):3277-81. PubMed ID: 3458182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]