These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 20187632)

  • 81. Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles.
    Moro A; Lonza L
    Transp Res D Transp Environ; 2018 Oct; 64():5-14. PubMed ID: 30740029
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Agrivoltaic systems have the potential to meet energy demands of electric vehicles in rural Oregon, US.
    Steadman CL; Higgins CW
    Sci Rep; 2022 Mar; 12(1):4647. PubMed ID: 35301406
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles.
    Cox B; Mutel CL; Bauer C; Mendoza Beltran A; van Vuuren DP
    Environ Sci Technol; 2018 Apr; 52(8):4989-4995. PubMed ID: 29570287
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Single-stage production of highly concentrated hydrogen from biomass-derived syngas.
    He L; Chen D
    ChemSusChem; 2010 Oct; 3(10):1169-71. PubMed ID: 20687054
    [No Abstract]   [Full Text] [Related]  

  • 85. Economic feasibility analysis for an electric public transportation system: Two cases of study in medium sized cities in Mexico.
    Sánchez JT; Del Río JA; Sánchez A
    PLoS One; 2022; 17(8):e0272363. PubMed ID: 35925938
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Transportation emissions scenarios for New York City under different carbon intensities of electricity and electric vehicle adoption rates.
    Isik M; Dodder R; Kaplan PO
    Nat Energy; 2021 Jan; 6():92-104. PubMed ID: 34804594
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Renewable energies for climate benign fuel production. Powering fuel-cell vehicles.
    Isenberg G; Edinger R; Ebner J
    Environ Sci Pollut Res Int; 2002; 9(2):99-104. PubMed ID: 12008301
    [No Abstract]   [Full Text] [Related]  

  • 88. [Energy Conservation and Emissions Reduction Benefits Analysis for Battery Electric Buses Based on Travel Services].
    Lin XD; Tian L; Lü B; Yang JX
    Huan Jing Ke Xue; 2015 Sep; 36(9):3515-21. PubMed ID: 26717718
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Integrating Circular Economy Strategies with Low-Carbon Scenarios: Lithium Use in Electric Vehicles.
    Watari T; Nansai K; Nakajima K; McLellan BC; Dominish E; Giurco D
    Environ Sci Technol; 2019 Oct; 53(20):11657-11665. PubMed ID: 31577427
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.
    Warren JA; Riddle ME; Graziano DJ; Das S; Upadhyayula VK; Masanet E; Cresko J
    Environ Sci Technol; 2015 Sep; 49(17):10294-302. PubMed ID: 26247853
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Fuel cell-based electric vehicles technologies and challenges.
    Selmi T; Khadhraoui A; Cherif A
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):78121-78131. PubMed ID: 36173525
    [TBL] [Abstract][Full Text] [Related]  

  • 92. [Life Cycle Prediction Assessment of Energy Saving and New Energy Vehicles for 2035].
    Fu P; Lan LB; Chen Y; Hao Z; Xing YX; Cai X; Zhang CM; Chen YS
    Huan Jing Ke Xue; 2023 Apr; 44(4):2365-2374. PubMed ID: 37040985
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Decarbonizing the transport sector: The promethean responsibility of Nicaragua.
    Cantarero MMV
    J Environ Manage; 2019 Sep; 245():311-321. PubMed ID: 31158683
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Research on the promotion of new energy vehicles based on multi-source heterogeneous data: consumer and manufacturer perspectives.
    Sun B; Ju Z
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):28863-28873. PubMed ID: 36401690
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Electrofuel Synthesis from Variable Renewable Electricity: An Optimization-Based Techno-Economic Analysis.
    Sherwin ED
    Environ Sci Technol; 2021 Jun; 55(11):7583-7594. PubMed ID: 33983018
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Open Source Energy System Modeling Using Break-Even Costs to Inform State-Level Policy: A North Carolina Case Study.
    Li B; Thomas J; de Queiroz AR; DeCarolis JF
    Environ Sci Technol; 2020 Jan; 54(2):665-676. PubMed ID: 31834995
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A comprehensive assessment of the techno-socio-economic research growth in electric vehicles using bibliometric analysis.
    Pinto K; Bansal HO; Goyal P
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):1788-1806. PubMed ID: 34714474
    [TBL] [Abstract][Full Text] [Related]  

  • 98. How can new energy vehicles become qualified relays from the perspective of carbon neutralization? Literature review and research prospect based on the CiteSpace knowledge map.
    Hua Y; Dong F
    Environ Sci Pollut Res Int; 2022 Aug; 29(37):55473-55491. PubMed ID: 35678969
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research.
    Hirose K
    Faraday Discuss; 2011; 151():11-8; discussion 95-115. PubMed ID: 22455059
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation.
    Kong Z; Zou Y; Liu T
    PLoS One; 2017; 12(7):e0180491. PubMed ID: 28671967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.