BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 2018766)

  • 1. Ligand binding and protein relaxation in heme proteins: a room temperature analysis of NO geminate recombination.
    Petrich JW; Lambry JC; Kuczera K; Karplus M; Poyart C; Martin JL
    Biochemistry; 1991 Apr; 30(16):3975-87. PubMed ID: 2018766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-dependent heme kinetics with nonexponential binding and barrier relaxation in the absence of protein conformational substates.
    Ye X; Ionascu D; Gruia F; Yu A; Benabbas A; Champion PM
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14682-7. PubMed ID: 17804802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand binding to heme proteins: connection between dynamics and function.
    Steinbach PJ; Ansari A; Berendzen J; Braunstein D; Chu K; Cowen BR; Ehrenstein D; Frauenfelder H; Johnson JB; Lamb DC
    Biochemistry; 1991 Apr; 30(16):3988-4001. PubMed ID: 2018767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic hole burning, hole filling, and conformational relaxation in heme proteins: direct evidence for the functional significance of a hierarchy of dynamical processes.
    Huang J; Ridsdale A; Wang J; Friedman JM
    Biochemistry; 1997 Nov; 36(47):14353-65. PubMed ID: 9398153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational relaxation and ligand binding in myoglobin.
    Ansari A; Jones CM; Henry ER; Hofrichter J; Eaton WA
    Biochemistry; 1994 May; 33(17):5128-45. PubMed ID: 8172888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonexponential relaxation after ligand dissociation from myoglobin: a molecular dynamics simulation.
    Kuczera K; Lambry JC; Martin JL; Karplus M
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5805-7. PubMed ID: 8516332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependent studies of NO recombination to heme and heme proteins.
    Ionascu D; Gruia F; Ye X; Yu A; Rosca F; Beck C; Demidov A; Olson JS; Champion PM
    J Am Chem Soc; 2005 Dec; 127(48):16921-34. PubMed ID: 16316238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand binding to heme proteins: II. Transitions in the heme pocket of myoglobin.
    Mourant JR; Braunstein DP; Chu K; Frauenfelder H; Nienhaus GU; Ormos P; Young RD
    Biophys J; 1993 Oct; 65(4):1496-507. PubMed ID: 8274643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast time-resolved IR studies of protein-ligand interactions.
    Lim M; Anfinrud PA
    Methods Mol Biol; 2005; 305():243-60. PubMed ID: 15940001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand binding to heme proteins. VI. Interconversion of taxonomic substates in carbonmonoxymyoglobin.
    Johnson JB; Lamb DC; Frauenfelder H; Müller JD; McMahon B; Nienhaus GU; Young RD
    Biophys J; 1996 Sep; 71(3):1563-73. PubMed ID: 8874030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of heme iron coordination and protein structure in the dynamics and geminate rebinding of nitric oxide to the H93G myoglobin mutant: implications for nitric oxide sensors.
    Negrerie M; Kruglik SG; Lambry JC; Vos MH; Martin JL; Franzen S
    J Biol Chem; 2006 Apr; 281(15):10389-98. PubMed ID: 16476730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast dynamics of diatomic ligand binding to nitrophorin 4.
    Benabbas A; Ye X; Kubo M; Zhang Z; Maes EM; Montfort WR; Champion PM
    J Am Chem Soc; 2010 Mar; 132(8):2811-20. PubMed ID: 20121274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand binding dynamics to the heme domain of the oxygen sensor Dos from Escherichia coli.
    Liebl U; Bouzhir-Sima L; Kiger L; Marden MC; Lambry JC; Négrerie M; Vos MH
    Biochemistry; 2003 Jun; 42(21):6527-35. PubMed ID: 12767236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast ligand rebinding in the heme domain of the oxygen sensors FixL and Dos: general regulatory implications for heme-based sensors.
    Liebl U; Bouzhir-Sima L; Negrerie M; Martin JL; Vos MH
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12771-6. PubMed ID: 12271121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoexcitation dynamics of NO-bound ferric myoglobin investigated by femtosecond vibrational spectroscopy.
    Park J; Lee T; Park J; Lim M
    J Phys Chem B; 2013 Mar; 117(10):2850-63. PubMed ID: 23432208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of the kinetics of ligand binding to a protein by molecular dynamics: geminate rebinding of nitric oxide to myoglobin.
    Schaad O; Zhou HX; Szabo A; Eaton WA; Henry ER
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9547-51. PubMed ID: 8415739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast CO Kinetics in Heme Proteins: Adiabatic Ligand Binding and Heavy Atom Tunneling.
    Benabbas A; Sun Y; Poulos TL; Champion PM
    J Am Chem Soc; 2017 Nov; 139(44):15738-15747. PubMed ID: 28984134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein conformation-controlled rebinding barrier of NO and its binding trajectories in myoglobin and hemoglobin at room temperature.
    Kim S; Lim M
    J Phys Chem B; 2012 May; 116(20):5819-30. PubMed ID: 22546010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin.
    LoBrutto R; Wei YH; Yoshida S; Van Camp HL; Scholes CP; King TE
    Biophys J; 1984 Feb; 45(2):473-9. PubMed ID: 6320917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.