These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 2018787)
21. Furosemide reduces insulin release by inhibition of Cl- and Ca2+ fluxes in beta-cells. Sandström PE; Sehlin J Am J Physiol; 1988 Nov; 255(5 Pt 1):E591-6. PubMed ID: 3056030 [TBL] [Abstract][Full Text] [Related]
22. Effects of acetylcholine on ion fluxes and chlorotetracycline fluorescence in pancreatic islets. Gagerman E; Sehlin J; Täljedal IB J Physiol; 1980 Mar; 300():505-13. PubMed ID: 6991671 [TBL] [Abstract][Full Text] [Related]
23. Sparteine increases insulin release by decreasing the K+ permeability of the B-cell membrane. Paolisso G; Nenquin M; Schmeer W; Mathot F; Meissner HP; Henquin JC Biochem Pharmacol; 1985 Jul; 34(13):2355-61. PubMed ID: 3893438 [TBL] [Abstract][Full Text] [Related]
24. ATP-sensitive K+ channels may control glucose-induced electrical activity in pancreatic B-cells. Henquin JC Biochem Biophys Res Commun; 1988 Oct; 156(2):769-75. PubMed ID: 3056403 [TBL] [Abstract][Full Text] [Related]
25. Restitution of defective glucose-stimulated insulin release of sulfonylurea type 1 receptor knockout mice by acetylcholine. Doliba NM; Qin W; Vatamaniuk MZ; Li C; Zelent D; Najafi H; Buettger CW; Collins HW; Carr RD; Magnuson MA; Matschinsky FM Am J Physiol Endocrinol Metab; 2004 May; 286(5):E834-43. PubMed ID: 14736703 [TBL] [Abstract][Full Text] [Related]
26. Mechanisms of the stimulation of insulin release by arginine-vasopressin in normal mouse islets. Gao ZY; Drews G; Nenquin M; Plant TD; Henquin JC J Biol Chem; 1990 Sep; 265(26):15724-30. PubMed ID: 2203783 [TBL] [Abstract][Full Text] [Related]
27. Epinephrine modifications of insulin release and of 86Rb+ or 45Ca2+ fluxes in rat islets. Tamagawa T; Henquin JC Am J Physiol; 1983 Mar; 244(3):E245-52. PubMed ID: 6338738 [TBL] [Abstract][Full Text] [Related]
28. Effects of acetylcholine and caerulein on 86Rb+ efflux in the mouse pancreas. Evidence for a sodium-potassium-chloride cotransport system. Singh J Biochim Biophys Acta; 1984 Aug; 775(1):77-85. PubMed ID: 6466663 [TBL] [Abstract][Full Text] [Related]
29. Barium mimics the effect of D-glucose on 86Rb+ fluxes in mouse pancreatic beta-cells. Sandström PE; Sehlin J Biochim Biophys Acta; 1990 Nov; 1055(2):93-7. PubMed ID: 2242386 [TBL] [Abstract][Full Text] [Related]
30. Fast reversibility of glucose-induced desensitization in rat pancreatic islets. Evidence for an involvement of ionic fluxes. Anello M; Rabuazzo AM; Degano C; Caltabiano V; Patanè G; Vigneri R; Purrello F Diabetes; 1996 Apr; 45(4):502-6. PubMed ID: 8603773 [TBL] [Abstract][Full Text] [Related]
31. Intracellular Ca(2+) modulation of ATP-sensitive K(+) channel activity in acetylcholine-induced activation of rat pancreatic beta-cells. Nakano K; Suga S; Takeo T; Ogawa Y; Suda T; Kanno T; Wakui M Endocrinology; 2002 Feb; 143(2):569-76. PubMed ID: 11796512 [TBL] [Abstract][Full Text] [Related]
33. Mechanisms of the stimulation of insulin release by oxytocin in normal mouse islets. Gao ZY; Drews G; Henquin JC Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):169-74. PubMed ID: 1674863 [TBL] [Abstract][Full Text] [Related]
34. The influence of temperature on the effects of acetylcholine and adrenaline on the membrane potential and 86Rb efflux in mouse pancreatic B-cells. Debuyser A; Drews G; Henquin JC Exp Physiol; 1991 Jul; 76(4):553-9. PubMed ID: 1910762 [TBL] [Abstract][Full Text] [Related]
35. Inosine partially mimics the effects of glucose on ionic fluxes, electrical activity, and insulin release in mouse pancreatic B-cells. Bozem M; Garrino MG; Henquin JC Pflugers Arch; 1987 Nov; 410(4-5):457-63. PubMed ID: 2448739 [TBL] [Abstract][Full Text] [Related]
36. Pancreatic acinar cells: the acetylcholine equilibrium potential and its ionic dependency. Iwatsuki N; Petersen OH J Physiol; 1977 Aug; 269(3):735-51. PubMed ID: 894613 [TBL] [Abstract][Full Text] [Related]
37. Stimulus-secretion coupling in beta-cells: modulation by pH. Pace CS; Tarvin JT; Smith JS Am J Physiol; 1983 Jan; 244(1):E3-18. PubMed ID: 6295181 [TBL] [Abstract][Full Text] [Related]
38. Are ionic fluxes of pancreatic beta cells a target for gastric inhibitory polypeptide? Wahl MA; Plehn RJ; Landsbeck EA; Verspohl EJ; Ammon HP Mol Cell Endocrinol; 1992 Dec; 90(1):117-23. PubMed ID: 1284494 [TBL] [Abstract][Full Text] [Related]
39. Role of voltage- and Ca2(+)-dependent K+ channels in the control of glucose-induced electrical activity in pancreatic B-cells. Henquin JC Pflugers Arch; 1990 Jul; 416(5):568-72. PubMed ID: 2235297 [TBL] [Abstract][Full Text] [Related]
40. Modulation of Ca2+ and K+ permeabilities by oxotremorine-m (Oxo-m) in rodent pancreatic B-cells. Bordin S; Carneiro EM; Boschero AC Exp Physiol; 1997 Nov; 82(6):967-76. PubMed ID: 9413728 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]