BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 20187943)

  • 1. Identification of functional modules that correlate with phenotypic difference: the influence of network topology.
    Hung JH; Whitfield TW; Yang TH; Hu Z; Weng Z; DeLisi C
    Genome Biol; 2010; 11(2):R23. PubMed ID: 20187943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of disrupted pathways in ulcerative colitis-related colorectal carcinoma by systematic tracking the dysregulated modules.
    Wu D; Li Q; Song G; Lu J
    J BUON; 2016; 21(2):366-74. PubMed ID: 27273946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of key gene modules and genes in colorectal cancer by co-expression analysis weighted gene co-expression network analysis.
    Wang P; Zheng H; Zhang J; Wang Y; Liu P; Xuan X; Li Q; Du Y
    Biosci Rep; 2020 Sep; 40(9):. PubMed ID: 32815531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MiRNA synergistic network construction and enrichment analysis for common target genes in small-cell lung cancer.
    Zhang TF; Cheng KW; Shi WY; Zhang JT; Liu KD; Xu SG; Chen JQ
    Asian Pac J Cancer Prev; 2012; 13(12):6375-8. PubMed ID: 23464461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction network analysis of YBX1 for identification of therapeutic targets in adenocarcinomas.
    Murugesan SN; Yadav BS; Maurya PK; Chaudhary A; Singh S; Mani A
    J Biosci; 2019 Jun; 44(2):. PubMed ID: 31180040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PAGED: a pathway and gene-set enrichment database to enable molecular phenotype discoveries.
    Huang H; Wu X; Sonachalam M; Mandape SN; Pandey R; MacDorman KF; Wan P; Chen JY
    BMC Bioinformatics; 2012; 13 Suppl 15(Suppl 15):S2. PubMed ID: 23046413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological signatures in regulatory network enable phenotypic heterogeneity in small cell lung cancer.
    Chauhan L; Ram U; Hari K; Jolly MK
    Elife; 2021 Mar; 10():. PubMed ID: 33729159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of miRNA-miRNA synergistic relationships in colorectal cancer.
    Zhao X; Song H; Zuo Z; Zhu Y; Dong X; Lu X
    Int J Biol Macromol; 2013 Apr; 55():98-103. PubMed ID: 23246904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signalling pathway impact analysis based on the strength of interaction between genes.
    Bao Z; Li X; Zan X; Shen L; Ma R; Liu W
    IET Syst Biol; 2016 Aug; 10(4):147-52. PubMed ID: 27444024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of key genes associated with colorectal cancer based on the transcriptional network.
    Chen G; Li H; Niu X; Li G; Han N; Li X; Li G; Liu Y; Sun G; Wang Y; Li Z; Li Q
    Pathol Oncol Res; 2015 Jul; 21(3):719-25. PubMed ID: 25613817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network analysis of differentially expressed genes reveals key genes in small cell lung cancer.
    Tantai JC; Pan XF; Zhao H
    Eur Rev Med Pharmacol Sci; 2015 Apr; 19(8):1364-72. PubMed ID: 25967710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Key Candidate Genes and Pathways in Colorectal Cancer by Integrated Bioinformatical Analysis.
    Guo Y; Bao Y; Ma M; Yang W
    Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28350360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kernel differential subgraph reveals dynamic changes in biomolecular networks.
    Xie J; Lu D; Li J; Wang J; Zhang Y; Li Y; Nie Q
    J Bioinform Comput Biol; 2018 Feb; 16(1):1750027. PubMed ID: 29281952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of key modules and hub genes for small-cell lung carcinoma and large-cell neuroendocrine lung carcinoma by weighted gene co-expression network analysis of clinical tissue-proteomes.
    Nakamura H; Fujii K; Gupta V; Hata H; Koizumu H; Hoshikawa M; Naruki S; Miyata Y; Takahashi I; Miyazawa T; Sakai H; Tsumoto K; Takagi M; Saji H; Nishimura T
    PLoS One; 2019; 14(6):e0217105. PubMed ID: 31166966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of key microRNAs and hub genes in non-small-cell lung cancer using integrative bioinformatics and functional analyses.
    Song F; Xuan Z; Yang X; Ye X; Pan Z; Fang Q
    J Cell Biochem; 2020 Mar; 121(3):2690-2703. PubMed ID: 31692035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of an miRNA-mRNA regulatory network in colorectal cancer with bioinformatics methods.
    Su Y; Zhang M; Zhang L; Chen S; Zhang D; Zhang X
    Anticancer Drugs; 2019 Jul; 30(6):588-595. PubMed ID: 30601194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of differentially expressed genes between lung adenocarcinoma and lung squamous cell carcinoma by gene expression profiling.
    Lu C; Chen H; Shan Z; Yang L
    Mol Med Rep; 2016 Aug; 14(2):1483-90. PubMed ID: 27356570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and Integrated Analysis of Key Biomarkers for Diagnosis and Prognosis of Non-Small Cell Lung Cancer.
    Liu X; Liu X; Li J; Ren F
    Med Sci Monit; 2019 Dec; 25():9280-9289. PubMed ID: 31805030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and validation of key genes associated with non-small-cell lung cancer.
    Ma Q; Xu Y; Liao H; Cai Y; Xu L; Xiao D; Liu C; Pu W; Zhong X; Guo X
    J Cell Physiol; 2019 Dec; 234(12):22742-22752. PubMed ID: 31127628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.