These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20187966)

  • 1. The behaviour of random forest permutation-based variable importance measures under predictor correlation.
    Nicodemus KK; Malley JD; Strobl C; Ziegler A
    BMC Bioinformatics; 2010 Feb; 11():110. PubMed ID: 20187966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictor correlation impacts machine learning algorithms: implications for genomic studies.
    Nicodemus KK; Malley JD
    Bioinformatics; 2009 Aug; 25(15):1884-90. PubMed ID: 19460890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An AUC-based permutation variable importance measure for random forests.
    Janitza S; Strobl C; Boulesteix AL
    BMC Bioinformatics; 2013 Apr; 14():119. PubMed ID: 23560875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental study of the intrinsic stability of random forest variable importance measures.
    Wang H; Yang F; Luo Z
    BMC Bioinformatics; 2016 Feb; 17():60. PubMed ID: 26842629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations.
    Boulesteix AL; Bender A; Lorenzo Bermejo J; Strobl C
    Brief Bioinform; 2012 May; 13(3):292-304. PubMed ID: 21908865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bias in random forest variable importance measures: illustrations, sources and a solution.
    Strobl C; Boulesteix AL; Zeileis A; Hothorn T
    BMC Bioinformatics; 2007 Jan; 8():25. PubMed ID: 17254353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. r2VIM: A new variable selection method for random forests in genome-wide association studies.
    Szymczak S; Holzinger E; Dasgupta A; Malley JD; Molloy AM; Mills JL; Brody LC; Stambolian D; Bailey-Wilson JE
    BioData Min; 2016; 9():7. PubMed ID: 26839594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power of data mining methods to detect genetic associations and interactions.
    Molinaro AM; Carriero N; Bjornson R; Hartge P; Rothman N; Chatterjee N
    Hum Hered; 2011; 72(2):85-97. PubMed ID: 21934324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thresholding Gini variable importance with a single-trained random forest: An empirical Bayes approach.
    Dunne R; Reguant R; Ramarao-Milne P; Szul P; Sng LMF; Lundberg M; Twine NA; Bauer DC
    Comput Struct Biotechnol J; 2023; 21():4354-4360. PubMed ID: 37711185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditional variable importance for random forests.
    Strobl C; Boulesteix AL; Kneib T; Augustin T; Zeileis A
    BMC Bioinformatics; 2008 Jul; 9():307. PubMed ID: 18620558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximal conditional chi-square importance in random forests.
    Wang M; Chen X; Zhang H
    Bioinformatics; 2010 Mar; 26(6):831-7. PubMed ID: 20130032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of random forest when SNPs are in linkage disequilibrium.
    Meng YA; Yu Y; Cupples LA; Farrer LA; Lunetta KL
    BMC Bioinformatics; 2009 Mar; 10():78. PubMed ID: 19265542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An application of Random Forests to a genome-wide association dataset: methodological considerations & new findings.
    Goldstein BA; Hubbard AE; Cutler A; Barcellos LF
    BMC Genet; 2010 Jun; 11():49. PubMed ID: 20546594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The revival of the Gini importance?
    Nembrini S; König IR; Wright MN
    Bioinformatics; 2018 Nov; 34(21):3711-3718. PubMed ID: 29757357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The parameter sensitivity of random forests.
    Huang BF; Boutros PC
    BMC Bioinformatics; 2016 Sep; 17(1):331. PubMed ID: 27586051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PERMORY: an LD-exploiting permutation test algorithm for powerful genome-wide association testing.
    Pahl R; Schäfer H
    Bioinformatics; 2010 Sep; 26(17):2093-100. PubMed ID: 20605926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling X Chromosome Data Using Random Forests: Conquering Sex Bias.
    Winham SJ; Jenkins GD; Biernacka JM
    Genet Epidemiol; 2016 Feb; 40(2):123-32. PubMed ID: 26639183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.