These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20187966)

  • 21. Sequential feature selection and inference using multi-variate random forests.
    Mayer J; Rahman R; Ghosh S; Pal R
    Bioinformatics; 2018 Apr; 34(8):1336-1344. PubMed ID: 29267851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Random forests for genetic association studies.
    Goldstein BA; Polley EC; Briggs FB
    Stat Appl Genet Mol Biol; 2011; 10(1):32. PubMed ID: 22889876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conditional permutation importance revisited.
    Debeer D; Strobl C
    BMC Bioinformatics; 2020 Jul; 21(1):307. PubMed ID: 32664864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using recursive feature elimination in random forest to account for correlated variables in high dimensional data.
    Darst BF; Malecki KC; Engelman CD
    BMC Genet; 2018 Sep; 19(Suppl 1):65. PubMed ID: 30255764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing gene length biases in gene set analysis of Genome-Wide Association Studies.
    Jia P; Tian J; Zhao Z
    Int J Comput Biol Drug Des; 2010; 3(4):297-310. PubMed ID: 21297229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generalized Additive Models and Inflated Type I Error Rates of Smoother Significance Tests.
    Young RL; Weinberg J; Vieira V; Ozonoff A; Webster TF
    Comput Stat Data Anal; 2011 Jan; 55(1):366-374. PubMed ID: 20948974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intervention in prediction measure: a new approach to assessing variable importance for random forests.
    Epifanio I
    BMC Bioinformatics; 2017 May; 18(1):230. PubMed ID: 28464827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Screening large-scale association study data: exploiting interactions using random forests.
    Lunetta KL; Hayward LB; Segal J; Van Eerdewegh P
    BMC Genet; 2004 Dec; 5():32. PubMed ID: 15588316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Visually Induced Motion Sickness on Emergency Braking Reaction Times in a Driving Simulator.
    Reinhard R; Tutulmaz E; Rutrecht HM; Hengstenberg P; Geissler B; Hecht H; Muttray A
    Hum Factors; 2019 Sep; 61(6):1004-1018. PubMed ID: 30860903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TSLRF: Two-Stage Algorithm Based on Least Angle Regression and Random Forest in genome-wide association studies.
    Sun J; Wu Q; Shen D; Wen Y; Liu F; Gao Y; Ding J; Zhang J
    Sci Rep; 2019 Dec; 9(1):18034. PubMed ID: 31792302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multilocus association analysis under polygenic models.
    Ott J; Sun D
    Int J Data Min Bioinform; 2012; 6(5):482-9. PubMed ID: 23155777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods.
    Alves AAC; da Costa RM; Bresolin T; Fernandes JĂșnior GA; Espigolan R; Ribeiro AMF; Carvalheiro R; de Albuquerque LG
    J Anim Sci; 2020 Jun; 98(6):. PubMed ID: 32474602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Statistical Procedure for Genome-Wide Detection of QTL Hotspots Using Public Databases with Application to Rice.
    Yang MH; Wu DH; Kao CH
    G3 (Bethesda); 2019 Feb; 9(2):439-452. PubMed ID: 30541929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient identification of context dependent subgroups of risk from genome-wide association studies.
    Dyson G; Sing CF
    Stat Appl Genet Mol Biol; 2014 Apr; 13(2):217-26. PubMed ID: 24570412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inter-hemispheric desynchronization of the human MT+ during visually induced motion sickness.
    Miyazaki J; Yamamoto H; Ichimura Y; Yamashiro H; Murase T; Yamamoto T; Umeda M; Higuchi T
    Exp Brain Res; 2015 Aug; 233(8):2421-31. PubMed ID: 26014459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A random forest based biomarker discovery and power analysis framework for diagnostics research.
    Acharjee A; Larkman J; Xu Y; Cardoso VR; Gkoutos GV
    BMC Med Genomics; 2020 Nov; 13(1):178. PubMed ID: 33228632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolating the effects of vection and optokinetic nystagmus on optokinetic rotation-induced motion sickness.
    Ji JT; So RH; Cheung RT
    Hum Factors; 2009 Oct; 51(5):739-51. PubMed ID: 20196298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient p-value estimation in massively parallel testing problems.
    Kustra R; Shi X; Murdoch DJ; Greenwood CM; Rangrej J
    Biostatistics; 2008 Oct; 9(4):601-12. PubMed ID: 18304995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computationally Tractable Multivariate HMM in Genome-Wide Mapping Studies.
    Choi H; Ghosh D; Qin Z
    Methods Mol Biol; 2017; 1552():135-148. PubMed ID: 28224496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology.
    Fox EW; Hill RA; Leibowitz SG; Olsen AR; Thornbrugh DJ; Weber MH
    Environ Monit Assess; 2017 Jul; 189(7):316. PubMed ID: 28589457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.