These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 2018843)

  • 1. NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Scott MD; Zuo L; Lubin BH; Chiu DT
    Blood; 1991 May; 77(9):2059-64. PubMed ID: 2018843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased catalase activity is the underlying mechanism of oxidant susceptibility in glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Scott MD; Wagner TC; Chiu DT
    Biochim Biophys Acta; 1993 Apr; 1181(2):163-8. PubMed ID: 8481405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidant damage to erythrocyte membrane in glucose-6-phosphate dehydrogenase deficiency: correlation with in vivo reduced glutathione concentration and membrane protein oxidation.
    Johnson RM; Ravindranath Y; ElAlfy MS; Goyette G
    Blood; 1994 Feb; 83(4):1117-23. PubMed ID: 8111051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced susceptibility of erythrocytes deficient in glucose-6-phosphate dehydrogenase to alloxan/glutathione-induced decrease in red cell deformability.
    Liu TZ; Lin TF; Hung IJ; Wei JS; Chiu DT
    Life Sci; 1994; 55(3):PL55-60. PubMed ID: 8007756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of BCNU and adriamycin on normal and G6PD deficient erythrocytes.
    Sagone AL; Burton GM
    Am J Hematol; 1979; 7(2):97-106. PubMed ID: 539595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways for the reduction of oxidized glutathione in the Plasmodium falciparum-infected erythrocyte: can parasite enzymes replace host red cell glucose-6-phosphate dehydrogenase?
    Roth EF; Schulman S; Vanderberg J; Olson J
    Blood; 1986 Mar; 67(3):827-30. PubMed ID: 3511989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythrocyte defense against hydrogen peroxide: preeminent importance of catalase.
    Scott MD; Lubin BH; Zuo L; Kuypers FA
    J Lab Clin Med; 1991 Jul; 118(1):7-16. PubMed ID: 2066646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance.
    Tang HY; Ho HY; Wu PR; Chen SH; Kuypers FA; Cheng ML; Chiu DT
    Antioxid Redox Signal; 2015 Mar; 22(9):744-59. PubMed ID: 25556665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidant injury of caucasian glucose-6-phosphate dehydrogenase-deficient red blood cells by phagocytosing leukocytes during infection.
    Baehner RL; Nathan DG; Castle WB
    J Clin Invest; 1971 Dec; 50(12):2466-73. PubMed ID: 5129301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-acetyl cysteine, L-cysteine, and beta-mercaptoethanol augment selenium-glutathione peroxidase activity in glucose-6-phosphate dehydrogenase-deficient human erythrocytes.
    Alicigüzel Y; Aslan M
    Clin Exp Med; 2004 Sep; 4(1):50-5. PubMed ID: 15598086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased basal oxidation of peroxiredoxin 2 and limited peroxiredoxin recycling in glucose-6-phosphate dehydrogenase-deficient erythrocytes from newborn infants.
    Cheah FC; Peskin AV; Wong FL; Ithnin A; Othman A; Winterbourn CC
    FASEB J; 2014 Jul; 28(7):3205-10. PubMed ID: 24636884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Content of reduced glutathione and consequences in recipients of glucose-6-phosphate dehydrogenase deficient red blood cells.
    Huang CS; Sung YC; Huang MJ; Yang CS; Shei WS; Tang TK
    Am J Hematol; 1998 Mar; 57(3):187-92. PubMed ID: 9495367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The role of NADPH in the development of neonatal jaundice with G6PD deficiency].
    Chen F; Zhang Y; Wu Z
    Zhonghua Yi Xue Za Zhi; 1997 Apr; 77(4):278-81. PubMed ID: 9596929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADP+ and NADPH in glucose-6-phosphate dehydrogenase-deficient erythrocytes under oxidative stimulation.
    Mareni C; Gaetani GF
    Biochim Biophys Acta; 1976 Jun; 430(3):395-8. PubMed ID: 7294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative evolutionary design of glucose 6-phosphate dehydrogenase expression in human erythrocytes.
    Salvador A; Savageau MA
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14463-8. PubMed ID: 14614139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione and glucose-6-phosphate dehydrogenase deficiency can increase protein glycosylation.
    Jain SK
    Free Radic Biol Med; 1998 Jan; 24(1):197-201. PubMed ID: 9436631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribose metabolism and nucleic acid synthesis in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes infected with Plasmodium falciparum.
    Roth EF; Ruprecht RM; Schulman S; Vanderberg J; Olson JA
    J Clin Invest; 1986 Apr; 77(4):1129-35. PubMed ID: 2420826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of oxidant agents on normal and G6PD-deficient erythrocytes.
    Bashan N; Makover O; Livne A; Moses S
    Isr J Med Sci; 1980 May; 16(5):351-6. PubMed ID: 7399864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pro-oxidative effects of tea and polyphenols, epigallocatechin-3-gallate and epigallocatechin, on G6PD-deficient erythrocytes in vitro.
    Ko CH; Li K; Ng PC; Fung KP; Li CL; Wong RP; Chui KM; Gu GJ; Yung E; Wang CC; Fok TF
    Int J Mol Med; 2006 Nov; 18(5):987-94. PubMed ID: 17016632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of exercise on oxidative stress in individuals with glucose-6-phosphate dehydrogenase deficiency.
    Jamurtas AZ; Fatouros IG; Koukosias N; Manthou E; Tofas T; Yfanti C; Nikolaidis MG; Koutedakis Y
    In Vivo; 2006; 20(6B):875-80. PubMed ID: 17203782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.