These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Concerted Actions of Octopamine and Dopamine Receptors Drive Olfactory Learning. Sabandal JM; Sabandal PR; Kim YC; Han KA J Neurosci; 2020 May; 40(21):4240-4250. PubMed ID: 32277043 [TBL] [Abstract][Full Text] [Related]
5. The cyclic AMP system and Drosophila learning. Davis RL; Cherry J; Dauwalder B; Han PL; Skoulakis E Mol Cell Biochem; 1995; 149-150():271-8. PubMed ID: 8569740 [TBL] [Abstract][Full Text] [Related]
6. Roles for Drosophila mushroom body neurons in olfactory learning and memory. Akalal DB; Wilson CF; Zong L; Tanaka NK; Ito K; Davis RL Learn Mem; 2006; 13(5):659-68. PubMed ID: 16980542 [TBL] [Abstract][Full Text] [Related]
7. Suppression of inhibitory GABAergic transmission by cAMP signaling pathway: alterations in learning and memory mutants. Ganguly A; Lee D Eur J Neurosci; 2013 May; 37(9):1383-93. PubMed ID: 23387411 [TBL] [Abstract][Full Text] [Related]
8. Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types. Blum AL; Li W; Cressy M; Dubnau J Curr Biol; 2009 Aug; 19(16):1341-50. PubMed ID: 19646879 [TBL] [Abstract][Full Text] [Related]
9. Octopamine and Dopamine differentially modulate the nicotine-induced calcium response in Drosophila Mushroom Body Kenyon Cells. Leyton V; Goles NI; Fuenzalida-Uribe N; Campusano JM Neurosci Lett; 2014 Feb; 560():16-20. PubMed ID: 24334164 [TBL] [Abstract][Full Text] [Related]
10. Layered reward signalling through octopamine and dopamine in Drosophila. Burke CJ; Huetteroth W; Owald D; Perisse E; Krashes MJ; Das G; Gohl D; Silies M; Certel S; Waddell S Nature; 2012 Dec; 492(7429):433-7. PubMed ID: 23103875 [TBL] [Abstract][Full Text] [Related]
11. Null EPAC mutants reveal a sequential order of versatile cAMP effects during Richlitzki A; Latour P; Schwärzel M Learn Mem; 2017 May; 24(5):210-215. PubMed ID: 28416632 [TBL] [Abstract][Full Text] [Related]
12. Gilgamesh is required for rutabaga-independent olfactory learning in Drosophila. Tan Y; Yu D; Pletting J; Davis RL Neuron; 2010 Sep; 67(5):810-20. PubMed ID: 20826312 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of learning-related cAMP signaling and stimulus integration in the Drosophila olfactory pathway. Tomchik SM; Davis RL Neuron; 2009 Nov; 64(4):510-21. PubMed ID: 19945393 [TBL] [Abstract][Full Text] [Related]
15. Learning defects in Drosophila growth restricted chico mutants are caused by attenuated adenylyl cyclase activity. Naganos S; Ueno K; Horiuchi J; Saitoe M Mol Brain; 2016 Apr; 9():37. PubMed ID: 27048332 [TBL] [Abstract][Full Text] [Related]
16. Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila. Qin H; Cressy M; Li W; Coravos JS; Izzi SA; Dubnau J Curr Biol; 2012 Apr; 22(7):608-14. PubMed ID: 22425153 [TBL] [Abstract][Full Text] [Related]
17. Innate and learned odor-guided behaviors utilize distinct molecular signaling pathways in a shared dopaminergic circuit. Noyes NC; Davis RL Cell Rep; 2023 Feb; 42(2):112026. PubMed ID: 36701232 [TBL] [Abstract][Full Text] [Related]
18. G(o) signaling is required for Drosophila associative learning. Ferris J; Ge H; Liu L; Roman G Nat Neurosci; 2006 Aug; 9(8):1036-40. PubMed ID: 16845387 [TBL] [Abstract][Full Text] [Related]
19. The propensity for consuming ethanol in Drosophila requires rutabaga adenylyl cyclase expression within mushroom body neurons. Xu S; Chan T; Shah V; Zhang S; Pletcher SD; Roman G Genes Brain Behav; 2012 Aug; 11(6):727-39. PubMed ID: 22624869 [TBL] [Abstract][Full Text] [Related]