These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 20188694)
41. Cardiolipin interaction with subunit c of ATP synthase: solid-state NMR characterization. Laage S; Tao Y; McDermott AE Biochim Biophys Acta; 2015 Jan; 1848(1 Pt B):260-5. PubMed ID: 25168468 [TBL] [Abstract][Full Text] [Related]
42. Role of gamma-subunit N- and C-termini in assembly of the mitochondrial ATP synthase in yeast. Dian EA; Papatheodorou P; Emmrich K; Randel O; Geissler A; Kölling R; Rassow J; Motz C J Mol Biol; 2008 Apr; 377(5):1314-23. PubMed ID: 18328502 [TBL] [Abstract][Full Text] [Related]
43. Interactions between beta D372 and gamma subunit N-terminus residues gamma K9 and gamma S12 are important to catalytic activity catalyzed by Escherichia coli F1F0-ATP synthase. Lowry DS; Frasch WD Biochemistry; 2005 May; 44(19):7275-81. PubMed ID: 15882066 [TBL] [Abstract][Full Text] [Related]
44. Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization. Flygaard RK; Mühleip A; Tobiasson V; Amunts A Nat Commun; 2020 Oct; 11(1):5342. PubMed ID: 33093501 [TBL] [Abstract][Full Text] [Related]
45. ATP synthase from Saccharomyces cerevisiae: location of subunit h in the peripheral stalk region. Rubinstein JL; Dickson VK; Runswick MJ; Walker JE J Mol Biol; 2005 Jan; 345(3):513-20. PubMed ID: 15581895 [TBL] [Abstract][Full Text] [Related]
46. Electron microscopy of the F1F0 ATP synthase: from structure to function. Gogol EP Microsc Res Tech; 1994 Mar; 27(4):294-306. PubMed ID: 8186448 [TBL] [Abstract][Full Text] [Related]
47. ATP synthase oligomerization: from the enzyme models to the mitochondrial morphology. Habersetzer J; Ziani W; Larrieu I; Stines-Chaumeil C; Giraud MF; Brèthes D; Dautant A; Paumard P Int J Biochem Cell Biol; 2013 Jan; 45(1):99-105. PubMed ID: 22664329 [TBL] [Abstract][Full Text] [Related]
48. The intermembrane space loop of subunit b (4) is a major determinant of the stability of yeast oligomeric ATP synthases. Weimann T; Vaillier J; Salin B; Velours J Biochemistry; 2008 Mar; 47(11):3556-63. PubMed ID: 18293929 [TBL] [Abstract][Full Text] [Related]
49. Assembly of the Escherichia coli FoF1 ATP synthase involves distinct subcomplex formation. Deckers-Hebestreit G Biochem Soc Trans; 2013 Oct; 41(5):1288-93. PubMed ID: 24059521 [TBL] [Abstract][Full Text] [Related]
50. Small-angle X-ray scattering reveals the solution structure of the peripheral stalk subunit H of the A1AO ATP synthase from Methanocaldococcus jannaschii and its binding to the catalytic A subunit. Biuković G; Rössle M; Gayen S; Mu Y; Grüber G Biochemistry; 2007 Feb; 46(8):2070-8. PubMed ID: 17263559 [TBL] [Abstract][Full Text] [Related]
51. Loss of mitochondrial ATP synthase subunit beta (Atp2) alters mitochondrial and chloroplastic function and morphology in Chlamydomonas. Lapaille M; Thiry M; Perez E; González-Halphen D; Remacle C; Cardol P Biochim Biophys Acta; 2010 Aug; 1797(8):1533-9. PubMed ID: 20416275 [TBL] [Abstract][Full Text] [Related]
52. The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural region. Matthies D; Preiss L; Klyszejko AL; Muller DJ; Cook GM; Vonck J; Meier T J Mol Biol; 2009 May; 388(3):611-8. PubMed ID: 19327366 [TBL] [Abstract][Full Text] [Related]
53. Functional analysis of subunit e of the F1Fo-ATP synthase of the yeast Saccharomyces cerevisiae: importance of the N-terminal membrane anchor region. Everard-Gigot V; Dunn CD; Dolan BM; Brunner S; Jensen RE; Stuart RA Eukaryot Cell; 2005 Feb; 4(2):346-55. PubMed ID: 15701797 [TBL] [Abstract][Full Text] [Related]
54. ATP synthase--the structure of the stator stalk. Weber J Trends Biochem Sci; 2007 Feb; 32(2):53-6. PubMed ID: 17208001 [TBL] [Abstract][Full Text] [Related]
55. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Gu J; Zhang L; Zong S; Guo R; Liu T; Yi J; Wang P; Zhuo W; Yang M Science; 2019 Jun; 364(6445):1068-1075. PubMed ID: 31197009 [TBL] [Abstract][Full Text] [Related]
56. Interaction between cytochrome caa3 and F1F0-ATP synthase of alkaliphilic Bacillus pseudofirmus OF4 is demonstrated by saturation transfer electron paramagnetic resonance and differential scanning calorimetry assays. Liu X; Gong X; Hicks DB; Krulwich TA; Yu L; Yu CA Biochemistry; 2007 Jan; 46(1):306-13. PubMed ID: 17198401 [TBL] [Abstract][Full Text] [Related]
57. Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. Arnold I; Pfeiffer K; Neupert W; Stuart RA; Schägger H EMBO J; 1998 Dec; 17(24):7170-8. PubMed ID: 9857174 [TBL] [Abstract][Full Text] [Related]
58. Supramolecular organization of the yeast F1Fo-ATP synthase. Thomas D; Bron P; Weimann T; Dautant A; Giraud MF; Paumard P; Salin B; Cavalier A; Velours J; Brèthes D Biol Cell; 2008 Oct; 100(10):591-601. PubMed ID: 18447829 [TBL] [Abstract][Full Text] [Related]
59. Mitochondrial ATP synthase: a bioinformatic approach reveals new insights about the roles of supernumerary subunits g and A6L. Hong S; Pedersen PL J Bioenerg Biomembr; 2004 Dec; 36(6):515-23. PubMed ID: 15692730 [TBL] [Abstract][Full Text] [Related]
60. Row-like organization of ATP synthase in intact mitochondria determined by cryo-electron tomography. Dudkina NV; Oostergetel GT; Lewejohann D; Braun HP; Boekema EJ Biochim Biophys Acta; 2010 Feb; 1797(2):272-7. PubMed ID: 19925775 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]