These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 20188788)

  • 1. Amino acid regulation of mammalian gene expression in the intestine.
    Brasse-Lagnel CG; Lavoinne AM; Husson AS
    Biochimie; 2010 Jul; 92(7):729-35. PubMed ID: 20188788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of mammalian gene expression by amino acids, especially glutamine.
    Brasse-Lagnel C; Lavoinne A; Husson A
    FEBS J; 2009 Apr; 276(7):1826-44. PubMed ID: 19250320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamine, arginine, and leucine signaling in the intestine.
    Marc Rhoads J; Wu G
    Amino Acids; 2009 May; 37(1):111-22. PubMed ID: 19130170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the L-leucine-induced up-regulation of system A amino acid transport.
    Peyrollier K; Hajduch E; Blair AS; Hyde R; Hundal HS
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):361-8. PubMed ID: 10947949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamine is a key regulator for amino acid-controlled cell growth through the mTOR signaling pathway in rat intestinal epithelial cells.
    Nakajo T; Yamatsuji T; Ban H; Shigemitsu K; Haisa M; Motoki T; Noma K; Nobuhisa T; Matsuoka J; Gunduz M; Yonezawa K; Tanaka N; Naomoto Y
    Biochem Biophys Res Commun; 2005 Jan; 326(1):174-80. PubMed ID: 15567168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation and function of IKK and IKK-related kinases.
    Häcker H; Karin M
    Sci STKE; 2006 Oct; 2006(357):re13. PubMed ID: 17047224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational role of amino acids in intestinal epithelial cells (Review).
    Naomoto Y; Yamatsuji T; Shigemitsu K; Ban H; Nakajo T; Shirakawa Y; Motok T; Kobayashi M; Gunduz M; Tanaka N
    Int J Mol Med; 2005 Aug; 16(2):201-4. PubMed ID: 16012750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB.
    Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R
    Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular and molecular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin's lymphoma: implications in chemosensitization and therapeutic intervention.
    Jazirehi AR; Bonavida B
    Oncogene; 2005 Mar; 24(13):2121-43. PubMed ID: 15789036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PAR-2 activation in intestinal epithelial cells potentiates interleukin-1beta-induced chemokine secretion via MAP kinase signaling pathways.
    Fyfe M; Bergström M; Aspengren S; Peterson A
    Cytokine; 2005 Sep; 31(5):358-67. PubMed ID: 16095910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arginine and Leucine regulate p70 S6 kinase and 4E-BP1 in intestinal epithelial cells.
    Ban H; Shigemitsu K; Yamatsuji T; Haisa M; Nakajo T; Takaoka M; Nobuhisa T; Gunduz M; Tanaka N; Naomoto Y
    Int J Mol Med; 2004 Apr; 13(4):537-43. PubMed ID: 15010853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability.
    Beugnet A; Tee AR; Taylor PM; Proud CG
    Biochem J; 2003 Jun; 372(Pt 2):555-66. PubMed ID: 12611592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small interfering RNA knocks down heat shock factor-1 (HSF-1) and exacerbates pro-inflammatory activation of NF-kappaB and AP-1 in vascular smooth muscle cells.
    Chen Y; Currie RW
    Cardiovasc Res; 2006 Jan; 69(1):66-75. PubMed ID: 16061216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of the MAP kinase pathways in induction of GADD45 following UV radiation.
    Tong T; Fan W; Zhao H; Jin S; Fan F; Blanck P; Alomo I; Rajasekaran B; Liu Y; Holbrook NJ; Zhan Q
    Exp Cell Res; 2001 Sep; 269(1):64-72. PubMed ID: 11525640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamine and interleukin-1beta interact at the level of Sp1 and nuclear factor-kappaB to regulate argininosuccinate synthetase gene expression.
    Brasse-Lagnel C; Lavoinne A; Loeber D; Fairand A; Bôle-Feysot C; Deniel N; Husson A
    FEBS J; 2007 Oct; 274(20):5250-62. PubMed ID: 17892496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High glucose activates pituitary proopiomelanocortin gene expression: possible role of free radical-sensitive transcription factors.
    Asaba K; Iwasaki Y; Asai M; Yoshida M; Nigawara T; Kambayashi M; Hashimoto K
    Diabetes Metab Res Rev; 2007 May; 23(4):317-23. PubMed ID: 16921546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downregulation of c-fos gene transcription in cells transformed by E1A and cHa-ras oncogenes: a role of sustained activation of MAP/ERK kinase cascade and of inactive chromatin structure at c-fos promoter.
    Kukushkin AN; Abramova MV; Svetlikova SB; Darieva ZA; Pospelova TV; Pospelov VA
    Oncogene; 2002 Jan; 21(5):719-30. PubMed ID: 11850800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation of IL-8 by iron chelator in human epithelial cells is independent from NF-kappaB but involves ERK1/2- and p38 kinase-dependent activation of AP-1.
    Choi EY; Park ZY; Choi EJ; Oh HM; Lee S; Choi SC; Lee KM; Im SH; Chun JS; Jun CD
    J Cell Biochem; 2007 Dec; 102(6):1442-57. PubMed ID: 17471497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physician Education: The Erythropoietin Receptor and Signal Transduction.
    Yoshimura A; Arai K
    Oncologist; 1996; 1(5):337-339. PubMed ID: 10388012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.