BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 20188870)

  • 1. Calcification of cartilage formed in vitro on calcium polyphosphate bone substitutes is regulated by inorganic polyphosphate.
    St-Pierre JP; Pilliar RM; Grynpas MD; Kandel RA
    Acta Biomater; 2010 Aug; 6(8):3302-9. PubMed ID: 20188870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The incorporation of a zone of calcified cartilage improves the interfacial shear strength between in vitro-formed cartilage and the underlying substrate.
    St-Pierre JP; Gan L; Wang J; Pilliar RM; Grynpas MD; Kandel RA
    Acta Biomater; 2012 Apr; 8(4):1603-15. PubMed ID: 22222151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sol gel-derived hydroxyapatite films over porous calcium polyphosphate substrates for improved tissue engineering of osteochondral-like constructs.
    Lee WD; Gawri R; Pilliar RM; Stanford WL; Kandel RA
    Acta Biomater; 2017 Oct; 62():352-361. PubMed ID: 28818689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of biphasic constructs containing cartilage with a calcified zone interface.
    Allan KS; Pilliar RM; Wang J; Grynpas MD; Kandel RA
    Tissue Eng; 2007 Jan; 13(1):167-77. PubMed ID: 17518590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of a nucleus pulposus-cartilage endplate construct in vitro.
    Hamilton DJ; Séguin CA; Wang J; Pilliar RM; Kandel RA;
    Biomaterials; 2006 Jan; 27(3):397-405. PubMed ID: 16139883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inorganic polyphosphate stimulates cartilage tissue formation.
    St-Pierre JP; Wang Q; Li SQ; Pilliar RM; Kandel RA
    Tissue Eng Part A; 2012 Jun; 18(11-12):1282-92. PubMed ID: 22429075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteochondral defect repair using a novel tissue engineering approach: sheep model study.
    Pilliar RM; Kandel RA; Grynpas MD; Zalzal P; Hurtig M
    Technol Health Care; 2007; 15(1):47-56. PubMed ID: 17264412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells.
    Lee WD; Hurtig MB; Pilliar RM; Stanford WL; Kandel RA
    Osteoarthritis Cartilage; 2015 Aug; 23(8):1307-15. PubMed ID: 25891750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro.
    Waldman SD; Grynpas MD; Pilliar RM; Kandel RA
    J Biomed Mater Res; 2002 Dec; 62(3):323-30. PubMed ID: 12209917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-power laser stimulation of tissue engineered cartilage tissue formed on a porous calcium polyphosphate scaffold.
    Gan L; Tse C; Pilliar RM; Kandel RA
    Lasers Surg Med; 2007 Mar; 39(3):286-93. PubMed ID: 17252579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage.
    Waldman SD; Grynpas MD; Pilliar RM; Kandel RA
    J Orthop Res; 2003 Jan; 21(1):132-8. PubMed ID: 12507590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Structure and performance of calcium polyphosphate for bone tissue engineering].
    Qiu K; Chen Y; Zhang Q; Su H; Yu X; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1271-4. PubMed ID: 17228724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of processing parameters on the degradation of calcium polyphosphate bioceramic for bone tissue scaffolds].
    Qin Y; Yu X; Chen Y; Ding Y; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):794-7. PubMed ID: 17899747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model.
    Kandel RA; Grynpas M; Pilliar R; Lee J; Wang J; Waldman S; Zalzal P; Hurtig M;
    Biomaterials; 2006 Aug; 27(22):4120-31. PubMed ID: 16564568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro engineering of cartilage: effects of serum substitutes, TGF-beta, and IL-1alpha.
    Glowacki J; Yates KE; Maclean R; Mizuno S
    Orthod Craniofac Res; 2005 Aug; 8(3):200-8. PubMed ID: 16022722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological and medical significance of calcium phosphates.
    Dorozhkin SV; Epple M
    Angew Chem Int Ed Engl; 2002 Sep; 41(17):3130-46. PubMed ID: 12207375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different effects of bone morphogenetic proteins 2, 4, 12, and 13 on the expression of cartilage and bone markers in the MC615 chondrocyte cell line.
    Valcourt U; Ronzière MC; Winkler P; Rosen V; Herbage D; Mallein-Gerin F
    Exp Cell Res; 1999 Sep; 251(2):264-74. PubMed ID: 10471312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep zone articular chondrocytes in vitro express genes that show specific changes with mineralization.
    Sun Y; Kandel R
    J Bone Miner Res; 1999 Nov; 14(11):1916-25. PubMed ID: 10571692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis-associated mineralization: possible implication of apoptosis in the regulation of endochondral ossification.
    Magne D; Bluteau G; Faucheux C; Palmer G; Vignes-Colombeix C; Pilet P; Rouillon T; Caverzasio J; Weiss P; Daculsi G; Guicheux J
    J Bone Miner Res; 2003 Aug; 18(8):1430-42. PubMed ID: 12929932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix vesicles in aging cartilage.
    Bonucci E; Dearden LC
    Fed Proc; 1976 Feb; 35(2):163-8. PubMed ID: 1248650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.