BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 20188960)

  • 1. Ultra trace detection of explosives in air: development of a portable fluorescent detector.
    Caron T; Guillemot M; Montméat P; Veignal F; Perraut F; Prené P; Serein-Spirau F
    Talanta; 2010 Apr; 81(1-2):543-8. PubMed ID: 20188960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A portable fluorescence detector for fast ultra trace detection of explosive vapors.
    Xin Y; He G; Wang Q; Fang Y
    Rev Sci Instrum; 2011 Oct; 82(10):103102. PubMed ID: 22047275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives.
    Kovalev IS; Taniya OS; Slovesnova NV; Kim GA; Santra S; Zyryanov GV; Kopchuk DS; Majee A; Charushin VN; Chupakhin ON
    Chem Asian J; 2016 Mar; 11(5):775-81. PubMed ID: 26757403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.
    Sheaff CN; Eastwood D; Wai CM
    Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A time series investigation of the stability of nitramine and nitroaromatic explosives in surface water samples at ambient temperature.
    Douglas TA; Johnson L; Walsh M; Collins C
    Chemosphere; 2009 Jun; 76(1):1-8. PubMed ID: 19329139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer.
    Stringer RC; Gangopadhyay S; Grant SA
    Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives.
    Beyazkilic P; Yildirim A; Bayindir M
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4997-5004. PubMed ID: 24635728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and characterization of an electrostatic particle sampling system for the selective collection of trace explosives.
    Beer S; Müller G; Wöllenstein J
    Talanta; 2012 Jan; 89():441-7. PubMed ID: 22284515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane.
    Zarei AR; Ghazanchayi B
    Talanta; 2016 Apr; 150():162-8. PubMed ID: 26838395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paper-Based Probes with Visual Response to Vapors from Nitroaromatic Explosives: Polyfluorenes and Tertiary Amines.
    Aguado R; Santos ARMG; Vallejos S; Valente AJM
    Molecules; 2022 May; 27(9):. PubMed ID: 35566254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence quenching of CdSe quantum dots by nitroaromatic explosives and their relative compounds.
    Shi GH; Shang ZB; Wang Y; Jin WJ; Zhang TC
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):247-52. PubMed ID: 17870656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence and piezoresistive cantilever sensing of trinitrotoluene by an upper-rim tetrabenzimidazole conjugate of calix[4]arene and delineation of the features of the complex by molecular dynamics.
    Kandpal M; Bandela AK; Hinge VK; Rao VR; Rao CP
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13448-56. PubMed ID: 24320549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV-FIA: UV-induced fluoro-immunochemical assay for ultra-trace detection of PETN, RDX, and TNT.
    Chaudhary S; Sonkusre P; Chopra A; Bhasin KK; Suri CR
    Anal Chim Acta; 2019 Oct; 1077():266-272. PubMed ID: 31307718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial bioreporters for the detection of trace explosives: performance enhancement by DNA shuffling and random mutagenesis.
    Shpigel E; Shemer B; Elad T; Glozman A; Belkin S
    Appl Microbiol Biotechnol; 2021 May; 105(10):4329-4337. PubMed ID: 33942130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive.
    Tu R; Liu B; Wang Z; Gao D; Wang F; Fang Q; Zhang Z
    Anal Chem; 2008 May; 80(9):3458-65. PubMed ID: 18336012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon.
    Zang J; Guo CX; Hu F; Yu L; Li CM
    Anal Chim Acta; 2011 Jan; 683(2):187-91. PubMed ID: 21167969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerobic Transformation of 2,4-Dinitrotoluene by Escherichia coli and Its Implications for the Detection of Trace Explosives.
    Shemer B; Yagur-Kroll S; Hazan C; Belkin S
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives.
    Zhang Y; Xu M; Bunes BR; Wu N; Gross DE; Moore JS; Zang L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7471-5. PubMed ID: 25823968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of explosives in hair--part II: factors affecting sorption.
    Oxley JC; Smith JL; Kirschenbaum LJ; Marimganti S
    J Forensic Sci; 2007 Nov; 52(6):1291-6. PubMed ID: 18093063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.