These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 20188960)
1. Ultra trace detection of explosives in air: development of a portable fluorescent detector. Caron T; Guillemot M; Montméat P; Veignal F; Perraut F; Prené P; Serein-Spirau F Talanta; 2010 Apr; 81(1-2):543-8. PubMed ID: 20188960 [TBL] [Abstract][Full Text] [Related]
2. A portable fluorescence detector for fast ultra trace detection of explosive vapors. Xin Y; He G; Wang Q; Fang Y Rev Sci Instrum; 2011 Oct; 82(10):103102. PubMed ID: 22047275 [TBL] [Abstract][Full Text] [Related]
3. Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives. Kovalev IS; Taniya OS; Slovesnova NV; Kim GA; Santra S; Zyryanov GV; Kopchuk DS; Majee A; Charushin VN; Chupakhin ON Chem Asian J; 2016 Mar; 11(5):775-81. PubMed ID: 26757403 [TBL] [Abstract][Full Text] [Related]
4. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines. Sheaff CN; Eastwood D; Wai CM Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719 [TBL] [Abstract][Full Text] [Related]
5. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils. Douglas TA; Walsh ME; McGrath CJ; Weiss CA J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785 [TBL] [Abstract][Full Text] [Related]
6. A time series investigation of the stability of nitramine and nitroaromatic explosives in surface water samples at ambient temperature. Douglas TA; Johnson L; Walsh M; Collins C Chemosphere; 2009 Jun; 76(1):1-8. PubMed ID: 19329139 [TBL] [Abstract][Full Text] [Related]
7. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Stringer RC; Gangopadhyay S; Grant SA Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483 [TBL] [Abstract][Full Text] [Related]
8. Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives. Beyazkilic P; Yildirim A; Bayindir M ACS Appl Mater Interfaces; 2014 Apr; 6(7):4997-5004. PubMed ID: 24635728 [TBL] [Abstract][Full Text] [Related]
9. Development and characterization of an electrostatic particle sampling system for the selective collection of trace explosives. Beer S; Müller G; Wöllenstein J Talanta; 2012 Jan; 89():441-7. PubMed ID: 22284515 [TBL] [Abstract][Full Text] [Related]
10. Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane. Zarei AR; Ghazanchayi B Talanta; 2016 Apr; 150():162-8. PubMed ID: 26838395 [TBL] [Abstract][Full Text] [Related]
11. Paper-Based Probes with Visual Response to Vapors from Nitroaromatic Explosives: Polyfluorenes and Tertiary Amines. Aguado R; Santos ARMG; Vallejos S; Valente AJM Molecules; 2022 May; 27(9):. PubMed ID: 35566254 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence quenching of CdSe quantum dots by nitroaromatic explosives and their relative compounds. Shi GH; Shang ZB; Wang Y; Jin WJ; Zhang TC Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):247-52. PubMed ID: 17870656 [TBL] [Abstract][Full Text] [Related]
13. Fluorescence and piezoresistive cantilever sensing of trinitrotoluene by an upper-rim tetrabenzimidazole conjugate of calix[4]arene and delineation of the features of the complex by molecular dynamics. Kandpal M; Bandela AK; Hinge VK; Rao VR; Rao CP ACS Appl Mater Interfaces; 2013 Dec; 5(24):13448-56. PubMed ID: 24320549 [TBL] [Abstract][Full Text] [Related]
14. UV-FIA: UV-induced fluoro-immunochemical assay for ultra-trace detection of PETN, RDX, and TNT. Chaudhary S; Sonkusre P; Chopra A; Bhasin KK; Suri CR Anal Chim Acta; 2019 Oct; 1077():266-272. PubMed ID: 31307718 [TBL] [Abstract][Full Text] [Related]
15. Bacterial bioreporters for the detection of trace explosives: performance enhancement by DNA shuffling and random mutagenesis. Shpigel E; Shemer B; Elad T; Glozman A; Belkin S Appl Microbiol Biotechnol; 2021 May; 105(10):4329-4337. PubMed ID: 33942130 [TBL] [Abstract][Full Text] [Related]
16. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Tu R; Liu B; Wang Z; Gao D; Wang F; Fang Q; Zhang Z Anal Chem; 2008 May; 80(9):3458-65. PubMed ID: 18336012 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon. Zang J; Guo CX; Hu F; Yu L; Li CM Anal Chim Acta; 2011 Jan; 683(2):187-91. PubMed ID: 21167969 [TBL] [Abstract][Full Text] [Related]
18. Aerobic Transformation of 2,4-Dinitrotoluene by Escherichia coli and Its Implications for the Detection of Trace Explosives. Shemer B; Yagur-Kroll S; Hazan C; Belkin S Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222096 [TBL] [Abstract][Full Text] [Related]
19. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives. Zhang Y; Xu M; Bunes BR; Wu N; Gross DE; Moore JS; Zang L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7471-5. PubMed ID: 25823968 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of explosives in hair--part II: factors affecting sorption. Oxley JC; Smith JL; Kirschenbaum LJ; Marimganti S J Forensic Sci; 2007 Nov; 52(6):1291-6. PubMed ID: 18093063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]