BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 20189109)

  • 1. Affinity reagents that target a specific inactive form of protein kinases.
    Ranjitkar P; Brock AM; Maly DJ
    Chem Biol; 2010 Feb; 17(2):195-206. PubMed ID: 20189109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affinity purification of protein kinases that adopt a specific inactive conformation.
    Ranjitkar P; Maly DJ
    Methods Mol Biol; 2012; 928():143-51. PubMed ID: 22956139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting inactive conformations of protein kinases using active structures: conformational selection of type-II inhibitors.
    Xu M; Yu L; Wan B; Yu L; Huang Q
    PLoS One; 2011; 6(7):e22644. PubMed ID: 21818358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of mitogen-activated protein kinase kinase 1 in the DFG-out conformation.
    Nakae S; Kitamura M; Fujiwara D; Sawa M; Shirai T; Fujii I; Tada T
    Acta Crystallogr F Struct Biol Commun; 2021 Dec; 77(Pt 12):459-464. PubMed ID: 34866601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence determinants of a specific inactive protein kinase conformation.
    Hari SB; Merritt EA; Maly DJ
    Chem Biol; 2013 Jun; 20(6):806-15. PubMed ID: 23790491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural elucidation of the DFG-Asp in and DFG-Asp out states of TAM kinases and insight into the selectivity of their inhibitors.
    Messoussi A; Peyronnet L; Feneyrolles C; Chevé G; Bougrin K; Yasri A
    Molecules; 2014 Oct; 19(10):16223-39. PubMed ID: 25310149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors.
    Vijayan RS; He P; Modi V; Duong-Ly KC; Ma H; Peterson JR; Dunbrack RL; Levy RM
    J Med Chem; 2015 Jan; 58(1):466-79. PubMed ID: 25478866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of structural requirements for the inhibition of VEGFR-2 tyrosine kinase: Binding site analysis of type II, 'DFG-out' inhibitors.
    Modi SJ; Kulkarni VM
    J Biomol Struct Dyn; 2022 Aug; 40(12):5712-5727. PubMed ID: 33459187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ABC of protein kinase conformations.
    Möbitz H
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt B):1555-66. PubMed ID: 25839999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redefining the Protein Kinase Conformational Space with Machine Learning.
    Ung PM; Rahman R; Schlessinger A
    Cell Chem Biol; 2018 Jul; 25(7):916-924.e2. PubMed ID: 29861272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DFGmodel: predicting protein kinase structures in inactive states for structure-based discovery of type-II inhibitors.
    Ung PM; Schlessinger A
    ACS Chem Biol; 2015 Jan; 10(1):269-78. PubMed ID: 25420233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead Discovery of Type II BRAF V600E Inhibitors Targeting the Structurally Validated DFG-Out Conformation Based upon Selected Fragments.
    Zhang Q; Zhang X; You Q
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27438814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence labels in kinases: a high-throughput kinase binding assay for the identification of DFG-out binding ligands.
    Simard JR; Rauh D
    Methods Mol Biol; 2012; 800():95-117. PubMed ID: 21964785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of type II binding mode: A privileged approach for kinase inhibitor focused drug discovery?
    Zhao Z; Wu H; Wang L; Liu Y; Knapp S; Liu Q; Gray NS
    ACS Chem Biol; 2014 Jun; 9(6):1230-41. PubMed ID: 24730530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation-Selective Analogues of Dasatinib Reveal Insight into Kinase Inhibitor Binding and Selectivity.
    Kwarcinski FE; Brandvold KR; Phadke S; Beleh OM; Johnson TK; Meagher JL; Seeliger MA; Stuckey JA; Soellner MB
    ACS Chem Biol; 2016 May; 11(5):1296-304. PubMed ID: 26895387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Protein Kinase-Ligand Interactions through 2.5D Kinochemometrics.
    Bosc N; Wroblowski B; Meyer C; Bonnet P
    J Chem Inf Model; 2017 Jan; 57(1):93-101. PubMed ID: 27983837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining a new nomenclature for the structures of active and inactive kinases.
    Modi V; Dunbrack RL
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6818-6827. PubMed ID: 30867294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of type I and type II inhibitors of c-Yes kinase using in silico and experimental techniques.
    Ramakrishnan C; Mary Thangakani A; Velmurugan D; Anantha Krishnan D; Sekijima M; Akiyama Y; Gromiha MM
    J Biomol Struct Dyn; 2018 May; 36(6):1566-1576. PubMed ID: 28589758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations show that conformational selection governs the binding preferences of imatinib for several tyrosine kinases.
    Aleksandrov A; Simonson T
    J Biol Chem; 2010 Apr; 285(18):13807-15. PubMed ID: 20200154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation and free energy calculation studies of kinase inhibitors binding to active and inactive conformations of VEGFR-2.
    Wu X; Wan S; Wang G; Jin H; Li Z; Tian Y; Zhu Z; Zhang J
    J Mol Graph Model; 2015 Mar; 56():103-12. PubMed ID: 25594497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.