These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20189180)

  • 1. Finite element modeling reveals complex strain mechanics in the aponeuroses of contracting skeletal muscle.
    Chi SW; Hodgson J; Chen JS; Reggie Edgerton V; Shin DD; Roiz RA; Sinha S
    J Biomech; 2010 May; 43(7):1243-50. PubMed ID: 20189180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of intramuscular fiber orientation on the Achilles tendon curvature using three-dimensional finite element modeling of contracting skeletal muscle.
    Kinugasa R; Yamamura N; Sinha S; Takagi S
    J Biomech; 2016 Oct; 49(14):3592-3595. PubMed ID: 27663620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.
    Hodgson JA; Chi SW; Yang JP; Chen JS; Edgerton VR; Sinha S
    J Mech Behav Biomed Mater; 2012 May; 9():163-83. PubMed ID: 22498294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of aponeurosis shape change during muscle contraction.
    Arellano CJ; Gidmark NJ; Konow N; Azizi E; Roberts TJ
    J Biomech; 2016 Jun; 49(9):1812-1817. PubMed ID: 27155748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions.
    Raiteri BJ; Cresswell AG; Lichtwark GA
    PeerJ; 2016; 4():e2260. PubMed ID: 27547566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multidimensional models for predicting muscle structure and fascicle pennation.
    Randhawa A; Wakeling JM
    J Theor Biol; 2015 Oct; 382():57-63. PubMed ID: 26073723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model.
    Rehorn MR; Blemker SS
    J Biomech; 2010 Sep; 43(13):2574-81. PubMed ID: 20541207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superficial aponeurosis of human gastrocnemius is elongated during contraction: implications for modeling muscle-tendon unit.
    Muramatsu T; Muraoka T; Kawakami Y; Fukunaga T
    J Biomech; 2002 Feb; 35(2):217-23. PubMed ID: 11784540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo intramuscular fascicle-aponeuroses dynamics of the human medial gastrocnemius during plantarflexion and dorsiflexion of the foot.
    Shin DD; Hodgson JA; Edgerton VR; Sinha S
    J Appl Physiol (1985); 2009 Oct; 107(4):1276-84. PubMed ID: 19608924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging.
    Zhou GQ; Chan P; Zheng YP
    Ultrasonics; 2015 Mar; 57():72-83. PubMed ID: 25465963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-contrast MRI reveals mechanical behavior of superficial and deep aponeuroses in human medial gastrocnemius during isometric contraction.
    Kinugasa R; Shin D; Yamauchi J; Mishra C; Hodgson JA; Edgerton VR; Sinha S
    J Appl Physiol (1985); 2008 Oct; 105(4):1312-20. PubMed ID: 18703759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive changes in muscle length.
    Herbert RD; Bolsterlee B; Gandevia SC
    J Appl Physiol (1985); 2019 May; 126(5):1445-1453. PubMed ID: 30571291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does resistance training increase aponeurosis width? The current results and future tasks.
    Abe T; Dankel S; Spitz RW; Buckner SL; Wong V; Viana RB; Bell ZW; Loenneke JP
    Eur J Appl Physiol; 2020 Jul; 120(7):1489-1494. PubMed ID: 32468284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The non-intuitive, in-vivo behavior of aponeuroses in a unipennate muscle.
    Bossuyt FM; Abramovic S; Leonard T; Sawatsky A; Smith CR; Taylor WR; Michael Scott W; Herzog W
    J Biomech; 2023 Jan; 147():111430. PubMed ID: 36640614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increase in vastus lateralis aponeurosis width induced by resistance training: implications for a hypertrophic model of pennate muscle.
    Wakahara T; Ema R; Miyamoto N; Kawakami Y
    Eur J Appl Physiol; 2015 Feb; 115(2):309-16. PubMed ID: 25294665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment by finite element modeling indicates that surgical intramuscular aponeurotomy performed closer to the tendon enhances intended acute effects in extramuscularly connected muscle.
    Yucesoy CA; Huijing PA
    J Biomech Eng; 2009 Feb; 131(2):021012. PubMed ID: 19102571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A framework for structured modeling of skeletal muscle.
    Lemos RR; Epstein M; Herzog W; Wyvill B
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):305-17. PubMed ID: 15621651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in three-dimensional muscle structure of rabbit gastrocnemius, flexor digitorum longus, and tibialis anterior during growth.
    Siebert T; Tomalka A; Stutzig N; Leichsenring K; Böl M
    J Mech Behav Biomed Mater; 2017 Oct; 74():507-519. PubMed ID: 28778781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architectural model for muscle growth during maturation.
    Papenkort S; Böl M; Siebert T
    Biomech Model Mechanobiol; 2021 Oct; 20(5):2031-2044. PubMed ID: 34302567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of poststroke impairments on brachialis muscle architecture as measured by ultrasound.
    Li L; Tong KY; Hu X
    Arch Phys Med Rehabil; 2007 Feb; 88(2):243-50. PubMed ID: 17270524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.