BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20189216)

  • 21. The use of NTA for lead phytoextraction from soil from a battery recycling site.
    Freitas EV; do Nascimento CW
    J Hazard Mater; 2009 Nov; 171(1-3):833-7. PubMed ID: 19595509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil.
    Gupta AK; Sinha S
    J Hazard Mater; 2007 Oct; 149(1):144-50. PubMed ID: 17475401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conceptual framework and mathematical model for the transport of metal-chelant complexes during in situ soil remediation.
    Zhang W; Tsang DC
    Chemosphere; 2013 May; 91(9):1281-8. PubMed ID: 23535466
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Speciation of metal-EDTA complexes by flow injection analysis with electrospray ionization mass spectrometry and ion chromatography with inductively coupled plasma mass spectrometry.
    Chen Z; Sun Q; Xi Y; Owens G
    J Sep Sci; 2008 Dec; 31(21):3796-802. PubMed ID: 18925619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent developments in chelate degradation.
    Sillanpää M; Pirkanniemi K
    Environ Technol; 2001 Jul; 22(7):791-801. PubMed ID: 11506204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of Zn2+ from aqueous single metal solutions and electroplating wastewater with wood sawdust and sugarcane bagasse modified with EDTA dianhydride (EDTAD).
    Pereira FV; Gurgel LV; Gil LF
    J Hazard Mater; 2010 Apr; 176(1-3):856-63. PubMed ID: 20047793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory.
    Sousa FW; Sousa MJ; Oliveira IR; Oliveira AG; Cavalcante RM; Fechine PB; Neto VO; de Keukeleire D; Nascimento RF
    J Environ Manage; 2009 Aug; 90(11):3340-4. PubMed ID: 19535200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of adsorption capacity of young brown coals and humic acids prepared from different coal mines in Anatolia.
    Pehlivan E; Arslan G
    J Hazard Mater; 2006 Nov; 138(2):401-8. PubMed ID: 16962233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass.
    Gupta VK; Rastogi A
    J Hazard Mater; 2008 Jun; 154(1-3):347-54. PubMed ID: 18053641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different options for metal recovery after sludge decontamination at the Montreal Urban Community wastewater treatment plant.
    Meunier N; Blais JF; Lounès M; Tyagi RD; Sasseville JL
    Water Sci Technol; 2002; 46(10):33-41. PubMed ID: 12479450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study.
    Merzouk B; Gourich B; Sekki A; Madani K; Chibane M
    J Hazard Mater; 2009 May; 164(1):215-22. PubMed ID: 18799259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leachability and metal-binding capacity in ageing landfill material.
    Ostman M; Wahlberg O; Mårtensson A
    Waste Manag; 2008; 28(1):142-50. PubMed ID: 17207615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of chelating agents in the remediation of metal-contaminated soils: a review.
    Lestan D; Luo CL; Li XD
    Environ Pollut; 2008 May; 153(1):3-13. PubMed ID: 18155817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the applicability of alginate-entrapped Chryseomonas luteola TEM 05 for heavy metal biosorption.
    Onal S; Baysal SH; Ozdemir G
    J Hazard Mater; 2007 Jul; 146(1-2):417-20. PubMed ID: 17412497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent.
    Tseng JY; Chang CY; Chang CF; Chen YH; Chang CC; Ji DR; Chiu CY; Chiang PC
    J Hazard Mater; 2009 Nov; 171(1-3):370-7. PubMed ID: 19595507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fixed-bed column study for the removal of cadmium (II) and nickel (II) ions from aqueous solutions using peat and mollusk shells.
    Li C; Champagne P
    J Hazard Mater; 2009 Nov; 171(1-3):872-8. PubMed ID: 19608338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion exchangers as adsorbents for removing metals from aquatic media.
    Khan MA; Bushra R; Ahmad A; Nabi SA; Khan DA; Akhtar A
    Arch Environ Contam Toxicol; 2014 Feb; 66(2):259-69. PubMed ID: 24292693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pre-concentration and separation of heavy metal ions by chemically modified waste paper gel.
    Adhikari CR; Parajuli D; Inoue K; Ohto K; Kawakita H
    Chemosphere; 2008 May; 72(2):182-8. PubMed ID: 18355892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pressure-assisted chelation extraction of lead from contaminated soil.
    Hong PK; Cai X; Cha Z
    Environ Pollut; 2008 May; 153(1):14-21. PubMed ID: 18242806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of ferrous and ferric iron in aqueous biological solutions.
    Pepper SE; Borkowski M; Richmann MK; Reed DT
    Anal Chim Acta; 2010 Mar; 663(2):172-7. PubMed ID: 20206007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.