BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20189631)

  • 1. Campus parking lot stormwater runoff: physicochemical analyses and toxicity tests using Ceriodaphnia dubia and Pimephales promelas.
    McQueen AD; Johnson BM; Rodgers JH; English WR
    Chemosphere; 2010 Apr; 79(5):561-9. PubMed ID: 20189631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative toxicity of chlorothalonil and chlorpyrifos: Ceriodaphnia dubia and Pimephales promelas.
    Sherrard RM; Murray-Gulde CL; Rodgers JH; Shah YT
    Environ Toxicol; 2002 Dec; 17(6):503-12. PubMed ID: 12448017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of water chemistry on the acute toxicity of lead to Pimephales promelas and Ceriodaphnia dubia.
    Mager EM; Esbaugh AJ; Brix KV; Ryan AC; Grosell M
    Comp Biochem Physiol C Toxicol Pharmacol; 2011 Jan; 153(1):82-90. PubMed ID: 20869465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative toxicity of chlorothalonil: Ceriodaphnia dubia and Pimephales promelas.
    Sherrard RM; Murray-Gulde CL; Rodgers JH; Shah YT
    Ecotoxicol Environ Saf; 2003 Nov; 56(3):327-33. PubMed ID: 14575671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing caffeine as an emerging environmental concern using conventional approaches.
    Moore MT; Greenway SL; Farris JL; Guerra B
    Arch Environ Contam Toxicol; 2008 Jan; 54(1):31-5. PubMed ID: 17957400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aquatic toxicity of nitrogen mustard to Ceriodaphina dubia, Daphnia magna, and Pimephales promelas.
    Lan CH; Lin TS; Peng CY
    Ecotoxicol Environ Saf; 2005 Jun; 61(2):273-9. PubMed ID: 15883099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-linear regression models predict the effects of water chemistry on acute lead toxicity to Ceriodaphnia dubia and Pimephales promelas.
    Esbaugh AJ; Brix KV; Mager EM; Grosell M
    Comp Biochem Physiol C Toxicol Pharmacol; 2011 Sep; 154(3):137-45. PubMed ID: 21586337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of urban highway runoff with respect to storm duration.
    Kayhanian M; Stransky C; Bay S; Lau SL; Stenstrom MK
    Sci Total Environ; 2008 Jan; 389(2-3):386-406. PubMed ID: 17920106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of toxicity reduction in wastewater effluent flowing through a treatment wetland using Pimephales promelas, Ceriodaphnia dubia, and Vibrio fischeri.
    Hemming JM; Turner PK; Brooks BW; Waller WT; La Point TW
    Arch Environ Contam Toxicol; 2002 Jan; 42(1):9-16. PubMed ID: 11706362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the Biotic Ligand Model relative to other site-specific criteria derivation methods for copper in surface waters with elevated hardness.
    Van Genderen E; Gensemer R; Smith C; Santore R; Ryan A
    Aquat Toxicol; 2007 Aug; 84(2):279-91. PubMed ID: 17681387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioswales reduce contaminants associated with toxicity in urban storm water.
    Anderson BS; Phillips BM; Voorhees JP; Siegler K; Tjeerdema R
    Environ Toxicol Chem; 2016 Dec; 35(12):3124-3134. PubMed ID: 27145488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water.
    Murray-Gulde C; Heatley JE; Karanfil T; Rodgers JH; Myers JE
    Water Res; 2003 Feb; 37(3):705-13. PubMed ID: 12688706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of diazinon toxicity in sediment and water of constructed wetlands using deployed Corbicula fluminea and laboratory testing.
    Bouldin JL; Farris JL; Moore MT; Smith S; Cooper CM
    Arch Environ Contam Toxicol; 2007 Aug; 53(2):174-82. PubMed ID: 17549545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas).
    Meyer JS; Boese CJ; Morris JM
    Aquat Toxicol; 2007 Aug; 84(2):268-78. PubMed ID: 17659358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated concentrations of ethinylestradiol, 17beta-estradiol, and medroxyprogesterone have little effect on reproduction and survival of Ceriodaphnia dubia.
    Jukosky JA; Watzin MC; Leiter JC
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):230-5. PubMed ID: 18636214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of chemical cues from fish tissues and organophosphorous pesticides on Ceriodaphnia dubia survival.
    Maul JD; Farris JL; Lydy MJ
    Environ Pollut; 2006 May; 141(1):90-7. PubMed ID: 16199115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of glyphosate and its formulation (Roundup) on the toxicity and bioavailability of metals to Ceriodaphnia dubia.
    Tsui MT; Wang WX; Chu LM
    Environ Pollut; 2005 Nov; 138(1):59-68. PubMed ID: 15878796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA).
    de Vlaming V; DiGiorgio C; Fong S; Deanovic LA; de la Paz Carpio-Obeso M; Miller JL; Miller MJ; Richard NJ
    Environ Pollut; 2004 Nov; 132(2):213-29. PubMed ID: 15312936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waterborne and sediment toxicity of fluoxetine to select organisms.
    Brooks BW; Turner PK; Stanley JK; Weston JJ; Glidewell EA; Foran CM; Slattery M; La Point TW; Huggett DB
    Chemosphere; 2003 Jul; 52(1):135-42. PubMed ID: 12729696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing contaminant sensitivity of endangered and threatened aquatic species: part III. Effluent toxicity tests.
    Dwyer FJ; Hardesty DK; Henke CE; Ingersoll CG; Whites DW; Augspurger T; Canfield TJ; Mount DR; Mayer FL
    Arch Environ Contam Toxicol; 2005 Feb; 48(2):174-83. PubMed ID: 15750777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.