These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 20189782)
1. Optimization of alpha-amylase production for the green synthesis of gold nanoparticles. Kalishwaralal K; Gopalram S; Vaidyanathan R; Deepak V; Pandian SR; Gurunathan S Colloids Surf B Biointerfaces; 2010 Jun; 77(2):174-80. PubMed ID: 20189782 [TBL] [Abstract][Full Text] [Related]
2. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Vaidyanathan R; Gopalram S; Kalishwaralal K; Deepak V; Pandian SR; Gurunathan S Colloids Surf B Biointerfaces; 2010 Jan; 75(1):335-41. PubMed ID: 19796922 [TBL] [Abstract][Full Text] [Related]
3. Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. Manivasagan P; Venkatesan J; Kang KH; Sivakumar K; Park SJ; Kim SK Int J Biol Macromol; 2015 Jan; 72():71-8. PubMed ID: 25128097 [TBL] [Abstract][Full Text] [Related]
4. Retention of enzymatic activity of alpha-amylase in the reductive synthesis of gold nanoparticles. Rangnekar A; Sarma TK; Singh AK; Deka J; Ramesh A; Chattopadhyay A Langmuir; 2007 May; 23(10):5700-6. PubMed ID: 17425338 [TBL] [Abstract][Full Text] [Related]
5. Optimization of medium components and cultural variables for enhanced production of acidic high maltose-forming and Ca2+-independent α-amylase by Bacillus acidicola. Sharma A; Satyanarayana T J Biosci Bioeng; 2011 May; 111(5):550-3. PubMed ID: 21292551 [TBL] [Abstract][Full Text] [Related]
6. Production and properties of alpha-amylase from Bacillus sp. BKL20. Kubrak OI; Storey JM; Storey KB; Lushchak VI Can J Microbiol; 2010 Apr; 56(4):279-88. PubMed ID: 20453894 [TBL] [Abstract][Full Text] [Related]
7. Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Wang Y; He X; Wang K; Zhang X; Tan W Colloids Surf B Biointerfaces; 2009 Oct; 73(1):75-9. PubMed ID: 19481910 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of pH-responsive nanocomposite microgels with size-controlled gold nanoparticles from ion-doped, lightly cross-linked poly(vinylpyridine). Akamatsu K; Shimada M; Tsuruoka T; Nawafune H; Fujii S; Nakamura Y Langmuir; 2010 Jan; 26(2):1254-9. PubMed ID: 19817404 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and spectroscopic characterization of gold nanoparticles. Philip D Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):80-5. PubMed ID: 18155956 [TBL] [Abstract][Full Text] [Related]
10. Seedless synthesis of octahedral gold nanoparticles in condensed surfactant phase. Cao C; Park S; Sim SJ J Colloid Interface Sci; 2008 Jun; 322(1):152-7. PubMed ID: 18395217 [TBL] [Abstract][Full Text] [Related]
12. Degradation behavior of chitosan chains in the 'green' synthesis of gold nanoparticles. Sun C; Qu R; Chen H; Ji C; Wang C; Sun Y; Wang B Carbohydr Res; 2008 Oct; 343(15):2595-9. PubMed ID: 18619580 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous synthesis and assembly of gold nanoparticles in cuttlebone-derived organic matrix: a "green" pathway for gold nanocomposite. Jia X; Qian W J Nanosci Nanotechnol; 2008 Sep; 8(9):4370-6. PubMed ID: 19049027 [TBL] [Abstract][Full Text] [Related]
14. Metallic cation induced one-dimensional assembly of poly(acrylic acid)-1-dodecanethiol-stabilized gold nanoparticles. Zhu L; Xue D; Wang Z Langmuir; 2008 Oct; 24(20):11385-9. PubMed ID: 18808165 [TBL] [Abstract][Full Text] [Related]
15. One-step synthesis of highly dispersed gold nanocrystals on silica spheres. Phonthammachai N; White TJ Langmuir; 2007 Nov; 23(23):11421-4. PubMed ID: 17915900 [TBL] [Abstract][Full Text] [Related]
16. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape. Lu L; Ai K; Ozaki Y Langmuir; 2008 Feb; 24(3):1058-63. PubMed ID: 18177060 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic disassembly of DNA-gold nanostructures. Kanaras AG; Wang Z; Brust M; Cosstick R; Bates AD Small; 2007 Apr; 3(4):590-4. PubMed ID: 17315237 [No Abstract] [Full Text] [Related]
19. Probing Au nanoparticle uptake by enzyme following the digestion of a starch-Au-nanoparticle composite. Deka J; Paul A; Ramesh A; Chattopadhyay A Langmuir; 2008 Sep; 24(18):9945-51. PubMed ID: 18712888 [TBL] [Abstract][Full Text] [Related]
20. The potential of brewer's spent grain to improve the production of α-amylase by Bacillus sp. KR-8104 in submerged fermentation system. Hashemi M; Razavi SH; Shojaosadati SA; Mousavi SM N Biotechnol; 2011 Feb; 28(2):165-72. PubMed ID: 20970528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]