BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

807 related articles for article (PubMed ID: 20190116)

  • 1. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'.
    Somero GN
    J Exp Biol; 2010 Mar; 213(6):912-20. PubMed ID: 20190116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat-shock response.
    Tomanek L
    Physiol Biochem Zool; 2008; 81(6):709-17. PubMed ID: 18844483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny.
    Stillman JH; Somero GN
    Physiol Biochem Zool; 2000; 73(2):200-8. PubMed ID: 10801398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological climatic limits in Drosophila: patterns and implications.
    Hoffmann AA
    J Exp Biol; 2010 Mar; 213(6):870-80. PubMed ID: 20190112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs.
    Tomanek L
    J Exp Biol; 2010 Mar; 213(6):971-9. PubMed ID: 20190122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species.
    Slabber S; Worland MR; Leinaas HP; Chown SL
    J Insect Physiol; 2007 Feb; 53(2):113-25. PubMed ID: 17222862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.).
    Johns GC; Somero GN
    Mol Biol Evol; 2004 Feb; 21(2):314-20. PubMed ID: 14660697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological mechanisms in coping with climate change.
    Fuller A; Dawson T; Helmuth B; Hetem RS; Mitchell D; Maloney SK
    Physiol Biochem Zool; 2010; 83(5):713-20. PubMed ID: 20578846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chapter 2. Vulnerability of marine turtles to climate change.
    Poloczanska ES; Limpus CJ; Hays GC
    Adv Mar Biol; 2009; 56():151-211. PubMed ID: 19895975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat freezes niche evolution.
    Araújo MB; Ferri-Yáñez F; Bozinovic F; Marquet PA; Valladares F; Chown SL
    Ecol Lett; 2013 Sep; 16(9):1206-19. PubMed ID: 23869696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of climate change for the reproductive capacity and survival of New World silversides (family Atherinopsidae).
    Strüssmann CA; Conover DO; Somoza GM; Miranda LA
    J Fish Biol; 2010 Nov; 77(8):1818-34. PubMed ID: 21078092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature adaptation of cytosolic malate dehydrogenases of limpets (genus Lottia): differences in stability and function due to minor changes in sequence correlate with biogeographic and vertical distributions.
    Dong Y; Somero GN
    J Exp Biol; 2009 Jan; 212(Pt 2):169-77. PubMed ID: 19112135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat tolerance and its plasticity in Antarctic fishes.
    Bilyk KT; Devries AL
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):382-90. PubMed ID: 21159323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a mesothermal endangered fish.
    Komoroske LM; Connon RE; Jeffries KM; Fangue NA
    Mol Ecol; 2015 Oct; 24(19):4960-81. PubMed ID: 26339983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change.
    Stitt BC; Burness G; Burgomaster KA; Currie S; McDermid JL; Wilson CC
    Physiol Biochem Zool; 2014; 87(1):15-29. PubMed ID: 24457918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative physiology: a "crystal ball" for predicting consequences of global change.
    Somero GN
    Am J Physiol Regul Integr Comp Physiol; 2011 Jul; 301(1):R1-14. PubMed ID: 21430078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The well-temperatured biologist. (American Society of Naturalists Presidential Address).
    Kingsolver JG
    Am Nat; 2009 Dec; 174(6):755-68. PubMed ID: 19857158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in thermal tolerance among sockeye salmon populations.
    Eliason EJ; Clark TD; Hague MJ; Hanson LM; Gallagher ZS; Jeffries KM; Gale MK; Patterson DA; Hinch SG; Farrell AP
    Science; 2011 Apr; 332(6025):109-12. PubMed ID: 21454790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.