These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 20190122)

  • 1. Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs.
    Tomanek L
    J Exp Biol; 2010 Mar; 213(6):971-9. PubMed ID: 20190122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat-shock response.
    Tomanek L
    Physiol Biochem Zool; 2008; 81(6):709-17. PubMed ID: 18844483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional gel analysis of the heat-shock response in marine snails (genus Tegula): interspecific variation in protein expression and acclimation ability.
    Tomanek L
    J Exp Biol; 2005 Aug; 208(Pt 16):3133-43. PubMed ID: 16081611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (Genus tegula) from different tidal heights.
    Tomanek L; Somero GN
    Physiol Biochem Zool; 2000; 73(2):249-56. PubMed ID: 10801403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larvae of related Diptera species from thermally contrasting habitats exhibit continuous up-regulation of heat shock proteins and high thermotolerance.
    Garbuz DG; Zatsepina OG; Przhiboro AA; Yushenova I; Guzhova IV; Evgen'ev MB
    Mol Ecol; 2008 Nov; 17(21):4763-77. PubMed ID: 19140990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress.
    Tomanek L; Zuzow MJ
    J Exp Biol; 2010 Oct; 213(Pt 20):3559-74. PubMed ID: 20889836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic and molecular stress responses of sublittoral bearded horse mussel Modiolus barbatus to warming sea water: implications for vertical zonation.
    Anestis A; Pörtner HO; Lazou A; Michaelidis B
    J Exp Biol; 2008 Sep; 211(Pt 17):2889-98. PubMed ID: 18723548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'.
    Somero GN
    J Exp Biol; 2010 Mar; 213(6):912-20. PubMed ID: 20190116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus.
    Fangue NA; Hofmeister M; Schulte PM
    J Exp Biol; 2006 Aug; 209(Pt 15):2859-72. PubMed ID: 16857869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in heat-shock proteins and photosynthetic thermotolerance among natural populations of Chenopodium album L. from contrasting thermal environments: implications for plant responses to global warming.
    Barua D; Heckathorn SA; Coleman JS
    J Integr Plant Biol; 2008 Nov; 50(11):1440-51. PubMed ID: 19017131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal adaptation in the intertidal snail Echinolittorina malaccana contradicts current theory by revealing the crucial roles of resting metabolism.
    Marshall DJ; Dong YW; McQuaid CD; Williams GA
    J Exp Biol; 2011 Nov; 214(Pt 21):3649-57. PubMed ID: 21993794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temperature on physiology and reproductive success of a montane leaf beetle: implications for persistence of native populations enduring climate change.
    Dahlhoff EP; Fearnley SL; Bruce DA; Gibbs AG; Stoneking R; McMillan DM; Deiner K; Smiley JT; Rank NE
    Physiol Biochem Zool; 2008; 81(6):718-32. PubMed ID: 18956974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny.
    Stillman JH; Somero GN
    Physiol Biochem Zool; 2000; 73(2):200-8. PubMed ID: 10801398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid metabolic adaptation in European sea bass (Dicentrarchus labrax) juveniles fed different carbohydrate sources after heat shock stress.
    Enes P; Panserat S; Kaushik S; Oliva-Teles A
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Sep; 145(1):73-81. PubMed ID: 16807027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.
    Magozzi S; Calosi P
    Glob Chang Biol; 2015 Jan; 21(1):181-94. PubMed ID: 25155644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal adaptation and acclimation of ectotherms from differing aquatic climates.
    Narum SR; Campbell NR; Meyer KA; Miller MR; Hardy RW
    Mol Ecol; 2013 Jun; 22(11):3090-7. PubMed ID: 23452191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and interspecific altered expression of heat shock protein genes in two leafminer species in response to thermal stress.
    Huang LH; Kang L
    Insect Mol Biol; 2007 Aug; 16(4):491-500. PubMed ID: 17651238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.
    Rosa R; Lopes AR; Pimentel M; Faleiro F; Baptista M; Trübenbach K; Narciso L; Dionísio G; Pegado MR; Repolho T; Calado R; Diniz M
    Glob Chang Biol; 2014 Oct; 20(10):3068-79. PubMed ID: 24771544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the physiological performance of ectotherms in fluctuating thermal environments.
    Niehaus AC; Angilletta MJ; Sears MW; Franklin CE; Wilson RS
    J Exp Biol; 2012 Feb; 215(Pt 4):694-701. PubMed ID: 22279077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.