These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1341 related articles for article (PubMed ID: 20190123)
21. Cold hardiness and deacclimation of overwintering Papilio zelicaon pupae. Williams CM; Nicolai A; Ferguson LV; Bernards MA; Hellmann JJ; Sinclair BJ Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():51-8. PubMed ID: 25139402 [TBL] [Abstract][Full Text] [Related]
22. Freezing induces a loss of freeze tolerance in an overwintering insect. Brown CL; Bale JS; Walters KF Proc Biol Sci; 2004 Jul; 271(1547):1507-11. PubMed ID: 15306323 [TBL] [Abstract][Full Text] [Related]
23. Antifreeze and ice nucleator proteins in terrestrial arthropods. Duman JG Annu Rev Physiol; 2001; 63():327-57. PubMed ID: 11181959 [TBL] [Abstract][Full Text] [Related]
24. [Cold adaptation strategy in insects inhabiting central Yakutia]. Li NG; Averenskiĭ AI Biofizika; 2007; 52(4):747-52. PubMed ID: 17907420 [TBL] [Abstract][Full Text] [Related]
25. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Overgaard J; Kearney MR; Hoffmann AA Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716 [TBL] [Abstract][Full Text] [Related]
26. Long-term oceanographic and ecological research in the Western English Channel. Southward AJ; Langmead O; Hardman-Mountford NJ; Aiken J; Boalch GT; Dando PR; Genner MJ; Joint I; Kendall MA; Halliday NC; Harris RP; Leaper R; Mieszkowska N; Pingree RD; Richardson AJ; Sims DW; Smith T; Walne AW; Hawkins SJ Adv Mar Biol; 2005; 47():1-105. PubMed ID: 15596166 [TBL] [Abstract][Full Text] [Related]
27. Factors that influence freezing in the sub-Antarctic springtail Tullbergia antarctica. Worland MR J Insect Physiol; 2005 Aug; 51(8):881-94. PubMed ID: 15936029 [TBL] [Abstract][Full Text] [Related]
28. Diapause termination, post-diapause development and reproduction in the beet webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Jiang XF; Huang SH; Luo LZ; Liu Y; Zhang L J Insect Physiol; 2010 Sep; 56(9):1325-31. PubMed ID: 20433846 [TBL] [Abstract][Full Text] [Related]
29. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. Régnière J; Bentz B J Insect Physiol; 2007 Jun; 53(6):559-72. PubMed ID: 17412358 [TBL] [Abstract][Full Text] [Related]
30. Winter forest soil respiration controlled by climate and microbial community composition. Monson RK; Lipson DL; Burns SP; Turnipseed AA; Delany AC; Williams MW; Schmidt SK Nature; 2006 Feb; 439(7077):711-4. PubMed ID: 16467835 [TBL] [Abstract][Full Text] [Related]
31. Seasonal changes in metabolic and temperature responses to cold air in humans. van Ooijen AM; van Marken Lichtenbelt WD; van Steenhoven AA; Westerterp KR Physiol Behav; 2004 Sep; 82(2-3):545-53. PubMed ID: 15276821 [TBL] [Abstract][Full Text] [Related]
32. Photoperiod is the main cue that triggers supercooling ability in the land snail, Helix aspersa (Gastropoda: Helicidae). Ansart A; Vernon P; Daguzan J Cryobiology; 2001 Jun; 42(4):266-73. PubMed ID: 11748935 [TBL] [Abstract][Full Text] [Related]
34. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604 [TBL] [Abstract][Full Text] [Related]
35. Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly. Vesala L; Salminen TS; Koštál V; Zahradníčková H; Hoikkala A J Exp Biol; 2012 Aug; 215(Pt 16):2891-7. PubMed ID: 22837463 [TBL] [Abstract][Full Text] [Related]
36. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Verberk WC; Overgaard J; Ern R; Bayley M; Wang T; Boardman L; Terblanche JS Comp Biochem Physiol A Mol Integr Physiol; 2016 Feb; 192():64-78. PubMed ID: 26506130 [TBL] [Abstract][Full Text] [Related]
37. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Bokhorst S; Bjerke JW; Davey MP; Taulavuori K; Taulavuori E; Laine K; Callaghan TV; Phoenix GK Physiol Plant; 2010 Oct; 140(2):128-40. PubMed ID: 20497369 [TBL] [Abstract][Full Text] [Related]
38. Induction and termination of prepupal summer diapause in Pseudopidorus fasciata (Lepidoptera: Zygaenidae). Wu SH; Yang D; Lai XT; Xue FS J Insect Physiol; 2006; 52(11-12):1095-104. PubMed ID: 17081558 [TBL] [Abstract][Full Text] [Related]
39. Water management by dormant insects: comparisons between dehydration resistance during summer aestivation and winter diapause. Benoit JB Prog Mol Subcell Biol; 2010; 49():209-29. PubMed ID: 20069411 [TBL] [Abstract][Full Text] [Related]
40. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). Welling A; Rinne P; Viherä-Aarnio A; Kontunen-Soppela S; Heino P; Palva ET J Exp Bot; 2004 Feb; 55(396):507-16. PubMed ID: 14739271 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]