These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 20190124)

  • 1. Organismal climatology: analyzing environmental variability at scales relevant to physiological stress.
    Helmuth B; Broitman BR; Yamane L; Gilman SE; Mach K; Mislan KA; Denny MW
    J Exp Biol; 2010 Mar; 213(6):995-1003. PubMed ID: 20190124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term oceanographic and ecological research in the Western English Channel.
    Southward AJ; Langmead O; Hardman-Mountford NJ; Aiken J; Boalch GT; Dando PR; Genner MJ; Joint I; Kendall MA; Halliday NC; Harris RP; Leaper R; Mieszkowska N; Pingree RD; Richardson AJ; Sims DW; Smith T; Walne AW; Hawkins SJ
    Adv Mar Biol; 2005; 47():1-105. PubMed ID: 15596166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From cells to coastlines: how can we use physiology to forecast the impacts of climate change?
    Helmuth B
    J Exp Biol; 2009 Mar; 212(Pt 6):753-60. PubMed ID: 19251989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological mechanisms in coping with climate change.
    Fuller A; Dawson T; Helmuth B; Hetem RS; Mitchell D; Maloney SK
    Physiol Biochem Zool; 2010; 83(5):713-20. PubMed ID: 20578846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs.
    Tomanek L
    J Exp Biol; 2010 Mar; 213(6):971-9. PubMed ID: 20190122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chapter 4. Susceptibility of sharks, rays and chimaeras to global extinction.
    Field IC; Meekan MG; Buckworth RC; Bradshaw CJ
    Adv Mar Biol; 2009; 56():275-363. PubMed ID: 19895977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal stress on intertidal limpets: long-term hindcasts and lethal limits.
    Denny MW; Miller LP; Harley CD
    J Exp Biol; 2006 Jul; 209(Pt 13):2420-31. PubMed ID: 16788025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions.
    Heino J; Virkkala R; Toivonen H
    Biol Rev Camb Philos Soc; 2009 Feb; 84(1):39-54. PubMed ID: 19032595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tipping points, thresholds and the keystone role of physiology in marine climate change research.
    Monaco CJ; Helmuth B
    Adv Mar Biol; 2011; 60():123-60. PubMed ID: 21962751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological climatic limits in Drosophila: patterns and implications.
    Hoffmann AA
    J Exp Biol; 2010 Mar; 213(6):870-80. PubMed ID: 20190112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chapter 2. Vulnerability of marine turtles to climate change.
    Poloczanska ES; Limpus CJ; Hays GC
    Adv Mar Biol; 2009; 56():151-211. PubMed ID: 19895975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Animal performance and stress: responses and tolerance limits at different levels of biological organisation.
    Kassahn KS; Crozier RH; Pörtner HO; Caley MJ
    Biol Rev Camb Philos Soc; 2009 May; 84(2):277-92. PubMed ID: 19344429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate change and latitudinal patterns of intertidal thermal stress.
    Helmuth B; Harley CD; Halpin PM; O'Donnell M; Hofmann GE; Blanchette CA
    Science; 2002 Nov; 298(5595):1015-7. PubMed ID: 12411702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between climate change and contaminants.
    Schiedek D; Sundelin B; Readman JW; Macdonald RW
    Mar Pollut Bull; 2007 Dec; 54(12):1845-56. PubMed ID: 17963794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis.
    Mas-Coma S; Valero MA; Bargues MD
    Vet Parasitol; 2009 Aug; 163(4):264-80. PubMed ID: 19375233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'.
    Somero GN
    J Exp Biol; 2010 Mar; 213(6):912-20. PubMed ID: 20190116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Long-term dynamic of fecal corticosterone and its ecological and social correlates in males of great gerbil (Rhombomys opimus Licht.). Non-invasive approach in studies of stress in natural populations].
    Rogovin KA; Tupikin AA; Randall JA; Kolosova IE; Moshkin MP
    Zh Obshch Biol; 2006; 67(1):37-52. PubMed ID: 16521569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate-mediated energetic constraints on the distribution of hibernating mammals.
    Humphries MM; Thomas DW; Speakman JR
    Nature; 2002 Jul; 418(6895):313-6. PubMed ID: 12124621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.