These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 20190251)

  • 1. Feature-incorporated alignment based ligand-binding residue prediction for carbohydrate-binding modules.
    Chou WY; Chou WI; Pai TW; Lin SC; Jiang TY; Tang CY; Chang MD
    Bioinformatics; 2010 Apr; 26(8):1022-8. PubMed ID: 20190251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophilic aromatic residue and in silico structure for carbohydrate binding module.
    Chou WY; Pai TW; Jiang TY; Chou WI; Tang CY; Chang MD
    PLoS One; 2011; 6(9):e24814. PubMed ID: 21966371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffoldin-borne family 3b carbohydrate-binding module from the cellulosome of Bacteroides cellulosolvens: structural diversity and significance of calcium for carbohydrate binding.
    Yaniv O; Shimon LJ; Bayer EA; Lamed R; Frolow F
    Acta Crystallogr D Biol Crystallogr; 2011 Jun; 67(Pt 6):506-15. PubMed ID: 21636890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational approaches for identification of conserved/unique binding pockets in the A chain of ricin.
    Zhou CL; Zemla AT; Roe D; Young M; Lam M; Schoeniger JS; Balhorn R
    Bioinformatics; 2005 Jul; 21(14):3089-96. PubMed ID: 15905278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of functional specificity determinants from protein sequences using log-likelihood ratios.
    Pei J; Cai W; Kinch LN; Grishin NV
    Bioinformatics; 2006 Jan; 22(2):164-71. PubMed ID: 16278237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating quality of template-based protein models by alignment stability.
    Chen H; Kihara D
    Proteins; 2008 May; 71(3):1255-74. PubMed ID: 18041762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the nitrogen regulatory protein superfamily: Homology detection at below random sequence identity.
    Kinch LN; Grishin NV
    Proteins; 2002 Jul; 48(1):75-84. PubMed ID: 12012339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for carbohydrate-binding specificity--a comparative assessment of two engineered carbohydrate-binding modules.
    von Schantz L; Håkansson M; Logan DT; Walse B; Osterlin J; Nordberg-Karlsson E; Ohlin M
    Glycobiology; 2012 Jul; 22(7):948-61. PubMed ID: 22434778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of a mannan-specific family 35 carbohydrate-binding module: evidence for significant conformational changes upon ligand binding.
    Tunnicliffe RB; Bolam DN; Pell G; Gilbert HJ; Williamson MP
    J Mol Biol; 2005 Mar; 347(2):287-96. PubMed ID: 15740741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain-based small molecule binding site annotation.
    Snyder KA; Feldman HJ; Dumontier M; Salama JJ; Hogue CW
    BMC Bioinformatics; 2006 Mar; 7():152. PubMed ID: 16545112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular mechanism of sulfated carbohydrate recognition by the cysteine-rich domain of mannose receptor.
    Liu Y; Misulovin Z; Bjorkman PJ
    J Mol Biol; 2001 Jan; 305(3):481-90. PubMed ID: 11152606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-binding site prediction based on three-dimensional protein modeling.
    Oh M; Joo K; Lee J
    Proteins; 2009; 77 Suppl 9():152-6. PubMed ID: 19768678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
    Laurie AT; Jackson RM
    Bioinformatics; 2005 May; 21(9):1908-16. PubMed ID: 15701681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative modeling without implicit sequence alignments.
    Kolinski A; Gront D
    Bioinformatics; 2007 Oct; 23(19):2522-7. PubMed ID: 17660201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence and structural features of carbohydrate binding in proteins and assessment of predictability using a neural network.
    Malik A; Ahmad S
    BMC Struct Biol; 2007 Jan; 7():1. PubMed ID: 17201922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a novel family of carbohydrate-binding modules with broad ligand specificity.
    Duan CJ; Feng YL; Cao QL; Huang MY; Feng JX
    Sci Rep; 2016 Jan; 6():19392. PubMed ID: 26765840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.