These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 20190251)

  • 21. Gene structure prediction by spliced alignment of genomic DNA with protein sequences: increased accuracy by differential splice site scoring.
    Usuka J; Brendel V
    J Mol Biol; 2000 Apr; 297(5):1075-85. PubMed ID: 10764574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-based identification of a carbohydrate binding module in Streptococcus pneumoniae hyaluronate lyase.
    Rigden DJ; Jedrzejas MJ
    Proteins; 2003 Aug; 52(2):203-11. PubMed ID: 12833544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using structure to inform carbohydrate binding module function.
    Abbott DW; van Bueren AL
    Curr Opin Struct Biol; 2014 Oct; 28():32-40. PubMed ID: 25108190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential oligosaccharide recognition by evolutionarily-related beta-1,4 and beta-1,3 glucan-binding modules.
    Boraston AB; Nurizzo D; Notenboom V; Ducros V; Rose DR; Kilburn DG; Davies GJ
    J Mol Biol; 2002 Jun; 319(5):1143-56. PubMed ID: 12079353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural analysis of the human galectin-9 N-terminal carbohydrate recognition domain reveals unexpected properties that differ from the mouse orthologue.
    Nagae M; Nishi N; Nakamura-Tsuruta S; Hirabayashi J; Wakatsuki S; Kato R
    J Mol Biol; 2008 Jan; 375(1):119-35. PubMed ID: 18005988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Homology-modelling protein-ligand interactions: allowing for ligand-induced conformational change.
    Dalton JA; Jackson RM
    J Mol Biol; 2010 Jun; 399(4):645-61. PubMed ID: 20434455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information.
    Ahmad S; Gromiha MM; Sarai A
    Bioinformatics; 2004 Mar; 20(4):477-86. PubMed ID: 14990443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-based secondary structure-independent approach to design protein ligands: Application to the design of Kv1.2 potassium channel blockers.
    Magis C; Gasparini D; Lecoq A; Le Du MH; Stura E; Charbonnier JB; Mourier G; Boulain JC; Pardo L; Caruana A; Joly A; Lefranc M; Masella M; Menez A; Cuniasse P
    J Am Chem Soc; 2006 Dec; 128(50):16190-205. PubMed ID: 17165772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein-protein binding site prediction by local structural alignment.
    Carl N; Konc J; Vehar B; Janezic D
    J Chem Inf Model; 2010 Oct; 50(10):1906-13. PubMed ID: 20919700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases.
    Fetrow JS; Skolnick J
    J Mol Biol; 1998 Sep; 281(5):949-68. PubMed ID: 9719646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An evolutionary trace method defines binding surfaces common to protein families.
    Lichtarge O; Bourne HR; Cohen FE
    J Mol Biol; 1996 Mar; 257(2):342-58. PubMed ID: 8609628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbohydrate-binding module tribes.
    Carvalho CC; Phan NN; Chen Y; Reilly PJ
    Biopolymers; 2015 Apr; 103(4):203-14. PubMed ID: 25381933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone.
    Chen P; Huang JZ; Gao X
    BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S4. PubMed ID: 25474163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbohydrate-binding protein identification by coupling structural similarity searching with binding affinity prediction.
    Zhao H; Yang Y; von Itzstein M; Zhou Y
    J Comput Chem; 2014 Nov; 35(30):2177-83. PubMed ID: 25220682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of Protein Pairs Sharing Common Active Ligands Using Protein Sequence, Structure, and Ligand Similarity.
    Chen YC; Tolbert R; Aronov AM; McGaughey G; Walters WP; Meireles L
    J Chem Inf Model; 2016 Sep; 56(9):1734-45. PubMed ID: 27559831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in molecular engineering of carbohydrate-binding modules.
    Armenta S; Moreno-Mendieta S; Sánchez-Cuapio Z; Sánchez S; Rodríguez-Sanoja R
    Proteins; 2017 Sep; 85(9):1602-1617. PubMed ID: 28547780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural Modeling and Ligand-Binding Prediction for Analysis of Structure-Unknown and Function-Unknown Proteins Using FORTE Alignment and PoSSuM Pocket Search.
    Tsuchiya Y; Tomii K
    Methods Mol Biol; 2020; 2165():1-11. PubMed ID: 32621216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into protein-carbohydrate recognition: A novel binding mechanism for CBM family 43.
    Mompeán M; Villalba M; Bruix M; Zamora-Carreras H
    J Mol Graph Model; 2017 May; 73():152-156. PubMed ID: 28279823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unravelling the Carbohydrate-Binding Preferences of the Carbohydrate-Binding Modules of AMP-Activated Protein Kinase.
    Mobbs JI; Di Paolo A; Metcalfe RD; Selig E; Stapleton DI; Griffin MDW; Gooley PR
    Chembiochem; 2018 Feb; 19(3):229-238. PubMed ID: 29193585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of carbohydrate binding sites on protein surfaces with 3-dimensional probability density distributions of interacting atoms.
    Tsai KC; Jian JW; Yang EW; Hsu PC; Peng HP; Chen CT; Chen JB; Chang JY; Hsu WL; Yang AS
    PLoS One; 2012; 7(7):e40846. PubMed ID: 22848404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.