These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 20190750)

  • 1. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins.
    Knowles TP; Oppenheim TW; Buell AK; Chirgadze DY; Welland ME
    Nat Nanotechnol; 2010 Mar; 5(3):204-7. PubMed ID: 20190750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the nanoscale properties of individual amyloid fibrils.
    Smith JF; Knowles TP; Dobson CM; Macphee CE; Welland ME
    Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15806-11. PubMed ID: 17038504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging Protein Fibers at the Nanoscale and In Situ.
    Bella A; Shaw M; De Santis E; Ryadnov MG
    Methods Mol Biol; 2018; 1777():83-100. PubMed ID: 29744829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toughening through nature-adapted nanoscale design.
    Burghard Z; Zini L; Srot V; Bellina P; Aken PA; Bill J
    Nano Lett; 2009 Dec; 9(12):4103-8. PubMed ID: 19894704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembling nanomaterials: monitoring the formation of amyloid fibrils, with a focus on small-angle X-ray scattering.
    Sawyer EB; Gras SL
    Methods Mol Biol; 2013; 996():77-101. PubMed ID: 23504419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid-like fibrils in elastin-related polypeptides: structural characterization and elastic properties.
    del Mercato LL; Maruccio G; Pompa PP; Bochicchio B; Tamburro AM; Cingolani R; Rinaldi R
    Biomacromolecules; 2008 Mar; 9(3):796-803. PubMed ID: 18257556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomechanical strength mechanisms of hierarchical biological materials and tissues.
    Buehler MJ; Ackbarow T
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):595-607. PubMed ID: 18803059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures.
    Fu J; Liu M; Liu Y; Yan H
    Acc Chem Res; 2012 Aug; 45(8):1215-26. PubMed ID: 22642503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Tunable Self-Assembly of Hierarchical Structure in Mussel-Inspired Peptide Films.
    Jehle F; Fratzl P; Harrington MJ
    ACS Nano; 2018 Mar; 12(3):2160-2168. PubMed ID: 29385330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed three-dimensional patterning of self-assembled peptide fibrils.
    Dinca V; Kasotakis E; Catherine J; Mourka A; Ranella A; Ovsianikov A; Chichkov BN; Farsari M; Mitraki A; Fotakis C
    Nano Lett; 2008 Feb; 8(2):538-43. PubMed ID: 18154365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches.
    Thiruvengadathan R; Korampally V; Ghosh A; Chanda N; Gangopadhyay K; Gangopadhyay S
    Rep Prog Phys; 2013 Jun; 76(6):066501. PubMed ID: 23722189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bottom-up synthesis of protein-based nanomaterials from engineered β-solenoid proteins.
    Peng Z; Peralta MDR; Cox DL; Toney MD
    PLoS One; 2020; 15(2):e0229319. PubMed ID: 32084222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties.
    Pan K; Zhong Q
    Soft Matter; 2015 Aug; 11(29):5898-904. PubMed ID: 26112282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method.
    Adamcik J; Lara C; Usov I; Jeong JS; Ruggeri FS; Dietler G; Lashuel HA; Hamley IW; Mezzenga R
    Nanoscale; 2012 Aug; 4(15):4426-9. PubMed ID: 22688679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT.
    Hamedi M; Herland A; Karlsson RH; Inganäs O
    Nano Lett; 2008 Jun; 8(6):1736-40. PubMed ID: 18465901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers.
    Mittal N; Ansari F; Gowda V K; Brouzet C; Chen P; Larsson PT; Roth SV; Lundell F; Wågberg L; Kotov NA; Söderberg LD
    ACS Nano; 2018 Jul; 12(7):6378-6388. PubMed ID: 29741364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial Electrostatic Self-Assembly of Amyloid Fibrils into Multifunctional Protein Films.
    Han Y; Cao Y; Zhou J; Yao Y; Wu X; Bolisetty S; Diener M; Handschin S; Lu C; Mezzenga R
    Adv Sci (Weinh); 2023 Mar; 10(9):e2206867. PubMed ID: 36698306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale morphology, dimensional control, and electrical properties of oligoanilines.
    Wang Y; Tran HD; Liao L; Duan X; Kaner RB
    J Am Chem Soc; 2010 Aug; 132(30):10365-73. PubMed ID: 20662516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallography and elasticity of individual GaN nanotubes.
    Liu B; Bando Y; Wang M; Tang C; Mitome M; Golberg D
    Nanotechnology; 2009 May; 20(18):185705. PubMed ID: 19420628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.