BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 20190880)

  • 1. Screening the cellular microenvironment: a role for microfluidics.
    Warrick JW; Murphy WL; Beebe DJ
    IEEE Rev Biomed Eng; 2008; 1(1):75-93. PubMed ID: 20190880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of a microfluidic cell culture platform embedded with nanoscale features.
    Yang Y; Kulangara K; Sia J; Wang L; Leong KW
    Lab Chip; 2011 May; 11(9):1638-46. PubMed ID: 21442110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges.
    Montanez-Sauri SI; Beebe DJ; Sung KE
    Cell Mol Life Sci; 2015 Jan; 72(2):237-49. PubMed ID: 25274061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Based Assays on Microfluidics for Drug Screening.
    Liu X; Zheng W; Jiang X
    ACS Sens; 2019 Jun; 4(6):1465-1475. PubMed ID: 31074263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis.
    Chen P; Li S; Guo Y; Zeng X; Liu BF
    Anal Chim Acta; 2020 Aug; 1125():94-113. PubMed ID: 32674786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Applications of Microfluidic Devices: A Review.
    Niculescu AG; Chircov C; Bîrcă AC; Grumezescu AM
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell culture models in microfluidic systems.
    Meyvantsson I; Beebe DJ
    Annu Rev Anal Chem (Palo Alto Calif); 2008; 1():423-49. PubMed ID: 20636085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells.
    Occhetta P; Visone R; Rasponi M
    Methods Mol Biol; 2017; 1612():303-323. PubMed ID: 28634953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal control of gene expression using microfluidics.
    Benedetto A; Accetta G; Fujita Y; Charras G
    Lab Chip; 2014 Apr; 14(7):1336-47. PubMed ID: 24531367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion dependent cell behavior in microenvironments.
    Yu H; Meyvantsson I; Shkel IA; Beebe DJ
    Lab Chip; 2005 Oct; 5(10):1089-95. PubMed ID: 16175265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic cell culture.
    Mehling M; Tay S
    Curr Opin Biotechnol; 2014 Feb; 25():95-102. PubMed ID: 24484886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering challenges of BioNEMS: the integration of microfluidics, micro- and nanodevices, models and external control for systems biology.
    Wikswo JP; Prokop A; Baudenbacher F; Cliffel D; Csukas B; Velkovsky M
    IEE Proc Nanobiotechnol; 2006 Aug; 153(4):81-101. PubMed ID: 16948492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical oxygen sensors for applications in microfluidic cell culture.
    Grist SM; Chrostowski L; Cheung KC
    Sensors (Basel); 2010; 10(10):9286-316. PubMed ID: 22163408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic cell chips for high-throughput drug screening.
    Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S
    Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel in-vitro and in-vivo techniques for optimizing cellular microenvironments by implementing biochemical, biomechanical and electromagnetic stimulations.
    Shamloo A; Heibatollahi M; Ghafar-Zadeh E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1397-400. PubMed ID: 23366161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic device to control interstitial flow-mediated homotypic and heterotypic cellular communication.
    Alonzo LF; Moya ML; Shirure VS; George SC
    Lab Chip; 2015 Sep; 15(17):3521-9. PubMed ID: 26190172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in microfluidic platforms for analyzing and regulating human pluripotent stem cells.
    Qian T; Shusta EV; Palecek SP
    Curr Opin Genet Dev; 2015 Oct; 34():54-60. PubMed ID: 26313850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing stem cell microenvironments using bioengineering approaches.
    Brafman DA
    Physiol Genomics; 2013 Dec; 45(23):1123-35. PubMed ID: 24064536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.