These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 20191309)
1. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Tanino KK; Kalcsits L; Silim S; Kendall E; Gray GR Plant Mol Biol; 2010 May; 73(1-2):49-65. PubMed ID: 20191309 [TBL] [Abstract][Full Text] [Related]
2. Magnetic resonance microimaging indicates water diffusion correlates with dormancy induction in cultured hybrid poplar (Populus spp.) buds. Kalcsits L; Kendall E; Silim S; Tanino K Tree Physiol; 2009 Oct; 29(10):1269-77. PubMed ID: 19696054 [TBL] [Abstract][Full Text] [Related]
3. Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Olsen JE Plant Mol Biol; 2010 May; 73(1-2):37-47. PubMed ID: 20213333 [TBL] [Abstract][Full Text] [Related]
4. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Hamilton JA; El Kayal W; Hart AT; Runcie DE; Arango-Velez A; Cooke JE Tree Physiol; 2016 Nov; 36(11):1432-1448. PubMed ID: 27449791 [TBL] [Abstract][Full Text] [Related]
5. Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Li C; Junttila O; Heino P; Palva ET Tree Physiol; 2003 May; 23(7):481-7. PubMed ID: 12670802 [TBL] [Abstract][Full Text] [Related]
6. A molecular marker associated with low-temperature induction of dormancy in red osier dogwood (Cornus sericea). Svendsen E; Wilen R; Stevenson R; Liu R; Tanino KK Tree Physiol; 2007 Mar; 27(3):385-97. PubMed ID: 17241980 [TBL] [Abstract][Full Text] [Related]
7. ELONGATED HYPOCOTYL 5a modulates FLOWERING LOCUS T2 and gibberellin levels to control dormancy and bud break in poplar. Gao Y; Chen Z; Feng Q; Long T; Ding J; Shu P; Deng H; Yu P; Tan W; Liu S; Rodriguez LG; Wang L; Resco de Dios V; Yao Y Plant Cell; 2024 May; 36(5):1963-1984. PubMed ID: 38271284 [TBL] [Abstract][Full Text] [Related]
8. Elucidation of molecular and hormonal background of early growth cessation and endodormancy induction in two contrasting Populus hybrid cultivars. Boldizsár Á; Soltész A; Tanino K; Kalapos B; Marozsán-Tóth Z; Monostori I; Dobrev P; Vankova R; Galiba G BMC Plant Biol; 2021 Feb; 21(1):111. PubMed ID: 33627081 [TBL] [Abstract][Full Text] [Related]
9. Opposite effects of daylength and temperature on flowering and summer dormancy of Poa bulbosa. Ofir M; Kigel J Ann Bot; 2006 Apr; 97(4):659-66. PubMed ID: 16467351 [TBL] [Abstract][Full Text] [Related]
10. Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus. Rinne PLH; Paul LK; van der Schoot C BMC Plant Biol; 2018 Oct; 18(1):220. PubMed ID: 30290771 [TBL] [Abstract][Full Text] [Related]
11. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Heide OM; Prestrud AK Tree Physiol; 2005 Jan; 25(1):109-14. PubMed ID: 15519992 [TBL] [Abstract][Full Text] [Related]
12. Differential responses of silver birch (Betula pendula) ecotypes to short-day photoperiod and low temperature. Li C; Welling A; Puhakainen T; Viherä-Aarnio A; Ernstsen A; Junttila O; Heino P; Palva ET Tree Physiol; 2005 Dec; 25(12):1563-9. PubMed ID: 16137942 [TBL] [Abstract][Full Text] [Related]
14. Components acting downstream of short day perception regulate differential cessation of cambial activity and associated responses in early and late clones of hybrid poplar. Resman L; Howe G; Jonsen D; Englund M; Druart N; Schrader J; Antti H; Skinner J; Sjödin A; Chen T; Bhalerao RP Plant Physiol; 2010 Nov; 154(3):1294-303. PubMed ID: 20847139 [TBL] [Abstract][Full Text] [Related]
15. Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species. Heide OM J Exp Bot; 2011 Nov; 62(15):5397-404. PubMed ID: 21862485 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of shoot tissue during photoperiod induced growth cessation in V. riparia Michx. grapevines. Victor KJ; Fennell AY; Grimplet J Proteome Sci; 2010 Aug; 8():44. PubMed ID: 20704748 [TBL] [Abstract][Full Text] [Related]
17. Effect of the photoperiod on bud dormancy in Liriodendron chinense. Hussain Q; Zheng M; Hänninen H; Bhalerao RP; Riaz MW; Sajjad M; Zhang R; Wu J J Plant Physiol; 2022 Dec; 279():153835. PubMed ID: 36257086 [TBL] [Abstract][Full Text] [Related]
18. Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar. Rohde A; Bastien C; Boerjan W Tree Physiol; 2011 May; 31(5):472-82. PubMed ID: 21636689 [TBL] [Abstract][Full Text] [Related]
19. Regulation of summer dormancy by water deficit and ABA in Poa bulbosa ecotypes. Ofir M; Kigel J Ann Bot; 2007 Feb; 99(2):293-9. PubMed ID: 17202183 [TBL] [Abstract][Full Text] [Related]
20. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). Welling A; Rinne P; Viherä-Aarnio A; Kontunen-Soppela S; Heino P; Palva ET J Exp Bot; 2004 Feb; 55(396):507-16. PubMed ID: 14739271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]