These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20191411)

  • 21. Whole-body vibration during passive standing in individuals with spinal cord injury: effects of plate choice, frequency, amplitude, and subject's posture on vibration propagation.
    Alizadeh-Meghrazi M; Masani K; Popovic MR; Craven BC
    PM R; 2012 Dec; 4(12):963-75. PubMed ID: 23102716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodynamic response of the seated human body to single-axis and dual-axis vibration: effect of backrest and non-linearity.
    Qiu Y; Griffin MJ
    Ind Health; 2012; 50(1):37-51. PubMed ID: 22146145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of seat backrest angle on human performance during whole-body vibration.
    Paddan GS; Holmes SR; Mansfield NJ; Hutchinson H; Arrowsmith CI; King SK; Jones RJ; Rimell AN
    Ergonomics; 2012; 55(1):114-28. PubMed ID: 22176489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of common working postures on balance control during the stabilisation phase of transitioning to standing.
    DiDomenico A; McGorry RW; Banks JJ
    Ergonomics; 2011 Nov; 54(11):1053-9. PubMed ID: 22026948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frequency weightings for fore-and-aft vibration at the back: effect of contact location, contact area, and body posture.
    Morioka M; Griffin MJ
    Ind Health; 2010; 48(5):538-49. PubMed ID: 20953071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the thickness of polyurethane foams at the seat pan and the backrest on fore-and-aft in-line and vertical cross-axis seat transmissibility when sitting with various contact conditions of backrest during fore-and-aft vibration.
    Zhang X; Zhang Q; Li Y; Liu C; Qiu Y
    Appl Ergon; 2021 May; 93():103354. PubMed ID: 33516943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contrast thresholds and fixation disparity during 5-Hz sinusoidal single- and dual-axis (vertical and lateral) whole-body vibration.
    Griefahn B; Bröde P; Jaschinski W
    Ergonomics; 2000 Mar; 43(3):317-32. PubMed ID: 10755656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Apparent mass matrix of standing subjects exposed to multi-axial whole-body vibration.
    Tarabini M; Solbiati S; Saggin B; Scaccabarozzi D
    Ergonomics; 2016 Aug; 59(8):1038-49. PubMed ID: 26472350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The transmission of translational seat vibration to the head: the effect of measurement position at the head.
    Paddan GS; Griffin MJ
    Proc Inst Mech Eng H; 1992; 206(3):159-68. PubMed ID: 1482511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stabilisation times after transitions to standing from different working postures.
    DiDomenico A; McGorry RW; Banks JJ
    Ergonomics; 2016 Oct; 59(10):1288-1293. PubMed ID: 26841262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative contribution of translational and rotational vibration to discomfort.
    Marjanen Y; Mansfield NJ
    Ind Health; 2010; 48(5):519-29. PubMed ID: 20953069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The transmission of translational seat vibration to the head--II. Horizontal seat vibration.
    Paddan GS; Griffin MJ
    J Biomech; 1988; 21(3):199-206. PubMed ID: 3379080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Equivalent sensation curves of simultaneous lateral and vertical sinusoidal whole-body vibration.
    Broede P; Bruening T; Griefahn B
    Aviat Space Environ Med; 1998 Oct; 69(10):986-91. PubMed ID: 9773901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transmission of roll and pitch seat vibration to the head.
    Paddan GS; Griffin MJ
    Ergonomics; 1994 Sep; 37(9):1513-31. PubMed ID: 7957029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transmission of vibration from a vibrating plate to the head of standing people.
    Nawayseh N
    Sports Biomech; 2019 Oct; 18(5):482-500. PubMed ID: 29558238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vertical vibration of seated subjects: effects of posture, vibration level, and frequency.
    Griffin MJ
    Aviat Space Environ Med; 1975 Mar; 46(3):269-76. PubMed ID: 1115729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of backrest and torso twist on the apparent mass of the seated body exposed to vertical vibration.
    Mansfield NJ; Maeda S
    Ind Health; 2005 Jul; 43(3):413-20. PubMed ID: 16100918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Whole-body vibration and postural stress among operators of construction equipment: a literature review.
    Kittusamy NK; Buchholz B
    J Safety Res; 2004; 35(3):255-61. PubMed ID: 15288559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A quasi-static discomfort measure in whole-body vibration.
    Rahmatalla S; Smith R; Meusch J; Xia T; Marler T; Contratto M
    Ind Health; 2010; 48(5):645-53. PubMed ID: 20953081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perception of fore-and-aft whole-body vibration intensity measured by two methods.
    Forta NG; Schust M
    Ergonomics; 2015; 58(11):1800-12. PubMed ID: 25984917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.