BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20191554)

  • 1. Ionic strength effects on electrophoretic focusing and separations.
    Bahga SS; Bercovici M; Santiago JG
    Electrophoresis; 2010 Mar; 31(5):910-9. PubMed ID: 20191554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliable electrophoretic mobilities free from Joule heating effects using CE.
    Evenhuis CJ; Hruska V; Guijt RM; Macka M; Gas B; Marriott PJ; Haddad PR
    Electrophoresis; 2007 Oct; 28(20):3759-66. PubMed ID: 17941134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing.
    Thormann W; Caslavska J; Mosher RA
    J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the effect of ionic strength of Tris-acetate background electrolyte on electrophoretic mobilities of mono-, di-, and trivalent organic anions by capillary electrophoresis.
    Koval D; Kasicka V; Zusková I
    Electrophoresis; 2005 Sep; 26(17):3221-31. PubMed ID: 16097028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ampholyte concentration on protein behavior in on-chip isoelectric focusing.
    Shim J; Dutta P; Ivory CF
    Electrophoresis; 2008 Mar; 29(5):1026-35. PubMed ID: 18257108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion of protein bands in a horseshoe microchannel during IEF.
    Shim J; Dutta P; Ivory CF
    Electrophoresis; 2009 Mar; 30(5):723-31. PubMed ID: 19260007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of background electrolytes for capillary electrophoresis: II. Computer simulation and comparison with experiments.
    Jaros M; Vceláková K; Zusková I; Gas B
    Electrophoresis; 2002 Aug; 23(16):2667-77. PubMed ID: 12210171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary zone electrophoresis of sub-microm-sized particles in electrolyte solutions of various ionic strengths: size-dependent electrophoretic migration and separation efficiency.
    Radko SP; Stastna M; Chrambach A
    Electrophoresis; 2000 Nov; 21(17):3583-92. PubMed ID: 11271475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dependence of the electrophoretic mobility of small organic ions on ionic strength and complex formation.
    Allison SA; Pei H; Baek S; Brown J; Lee MY; Nguyen V; Twahir UT; Wu H
    Electrophoresis; 2010 Mar; 31(5):920-32. PubMed ID: 20191555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative temperature gradient focusing performed using background electrolytes at various pH values.
    Shackman JG; Munson MS; Kan CW; Ross D
    Electrophoresis; 2006 Sep; 27(17):3420-7. PubMed ID: 16944457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ITP in dynamically double-coated fused-silica capillaries.
    Caslavska J; Thormann W
    Electrophoresis; 2006 Dec; 27(23):4618-30. PubMed ID: 17136714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of limiting mobilities and dissociation constants of 21 amino acids by capillary zone electrophoresis at very low pH.
    Zusková I; Novotná A; Vceláková K; Gas B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Sep; 841(1-2):129-34. PubMed ID: 16567135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New approach to calculating and predicting the ionic strength generated during carrier ampholyte isoelectric focusing.
    Naydenov CL; Kirazov EP; Kirazov LP; Genadiev TT
    J Chromatogr A; 2006 Jul; 1121(1):129-39. PubMed ID: 16698027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite sample effect in temperature gradient focusing.
    Lin H; Shackman JG; Ross D
    Lab Chip; 2008 Jun; 8(6):969-78. PubMed ID: 18497919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic mobility measurements of fluorescent dyes using on-chip capillary electrophoresis.
    Milanova D; Chambers RD; Bahga SS; Santiago JG
    Electrophoresis; 2011 Nov; 32(22):3286-94. PubMed ID: 22102501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of electrolyte nature on the separation selectivity of amphetamines in nonaqueous capillary electrophoresis: protonation degree versus ion pairing effects.
    Descroix S; Varenne A; Geiser L; Cherkaoui S; Veuthey JL; Gareil P
    Electrophoresis; 2003 May; 24(10):1577-86. PubMed ID: 12761787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on the theory of moving reaction boundary, electromigration reaction methods and applications in isoelectric focusing and sample pre-concentration.
    Cao CX; Fan LY; Zhang W
    Analyst; 2008 Sep; 133(9):1139-57. PubMed ID: 18709186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the zeta potential of silica capillaries in relation to the background electrolyte composition.
    Berli CL; Piaggio MV; Deiber JA
    Electrophoresis; 2003 May; 24(10):1587-95. PubMed ID: 12761788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eigenmobilities in background electrolytes for capillary zone electrophoresis: IV. Computer program PeakMaster.
    Jaros M; Hruska V; Stedrý M; Zusková I; Gas B
    Electrophoresis; 2004 Oct; 25(18-19):3080-5. PubMed ID: 15472981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust and high-resolution simulations of nonlinear electrokinetic processes in variable cross-section channels.
    Bahga SS; Bercovici M; Santiago JG
    Electrophoresis; 2012 Oct; 33(19-20):3036-51. PubMed ID: 22996734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.