BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 20191559)

  • 1. Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentials.
    Zhao C; Yang C
    Electrophoresis; 2010 Mar; 31(5):973-9. PubMed ID: 20191559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of electroosmotic flow of power-law fluids in a slit microchannel.
    Zhao C; Zholkovskij E; Masliyah JH; Yang C
    J Colloid Interface Sci; 2008 Oct; 326(2):503-10. PubMed ID: 18656891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel.
    Zhao C; Yang C
    Electrophoresis; 2013 Mar; 34(5):662-7. PubMed ID: 23229874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows.
    Park HM; Lee WM
    J Colloid Interface Sci; 2008 Jan; 317(2):631-6. PubMed ID: 17935728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroosmotic flow in a capillary annulus with high zeta potentials.
    Kang Y; Yang C; Huang X
    J Colloid Interface Sci; 2002 Sep; 253(2):285-94. PubMed ID: 16290861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Exact Solution for Power-Law Fluids in a Slit Microchannel with Different Zeta Potentials under Electroosmotic Forces.
    Choi DS; Yun S; Choi W
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of electroosmotic slip flow of fractional Oldroyd-B fluids at high zeta potentials.
    Wang X; Jiang Y; Qiao Y; Xu H; Qi H
    Electrophoresis; 2020 Jun; 41(10-11):769-777. PubMed ID: 31901144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow behavior of periodical electroosmosis in microchannel for biochips.
    Wang X; Wu J
    J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoresis of a colloidal sphere in a spherical cavity with arbitrary zeta potential distributions and arbitrary double-layer thickness.
    Keh HJ; Hsieh TH
    Langmuir; 2008 Jan; 24(2):390-8. PubMed ID: 18085803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recursive estimation of transient inhomogeneous zeta potential in microchannel turns using velocity measurements.
    Park HM; Kim TW
    Biomed Microdevices; 2009 Feb; 11(1):231-41. PubMed ID: 18807196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approximate Solution for Electroosmotic Flow of Power-Law Fluids in a Planar Microchannel with Asymmetric Electrochemical Boundary Conditions.
    Choi W; Yun S; Choi DS
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nonuniform surface potential on electroosmotic flow at large applied electric field strength.
    Chen L; Conlisk AT
    Biomed Microdevices; 2009 Feb; 11(1):251-8. PubMed ID: 18850273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Parametric Study of Electroosmotically Driven Flow of Power-Law Fluid in a Cylindrical Microcapillary at High Zeta Potential.
    Deng S
    Micromachines (Basel); 2017 Nov; 8(12):. PubMed ID: 30400535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetics of non-Newtonian fluids: a review.
    Zhao C; Yang C
    Adv Colloid Interface Sci; 2013 Dec; 201-202():94-108. PubMed ID: 24148843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotating electroosmotic flow of power-law fluid through polyelectrolyte grafted microchannel.
    Patel M; Harish Kruthiventi SS; Kaushik P
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111058. PubMed ID: 32408258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electro-osmotic mobility of non-Newtonian fluids.
    Zhao C; Yang C
    Biomicrofluidics; 2011 Mar; 5(1):14110. PubMed ID: 21503161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge.
    Xuan X; Li D
    J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.
    Park HM; Kim TW
    Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.
    Chen S; He X; Bertola V; Wang M
    J Colloid Interface Sci; 2014 Dec; 436():186-93. PubMed ID: 25278358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.