These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 20191566)

  • 1. The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors.
    Greenberg MJ; Moore JR
    Cytoskeleton (Hoboken); 2010 May; 67(5):273-85. PubMed ID: 20191566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus.
    Greenberg MJ; Mealy TR; Jones M; Szczesna-Cordary D; Moore JR
    Am J Physiol Regul Integr Comp Physiol; 2010 Apr; 298(4):R989-96. PubMed ID: 20089714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Velocity of myosin-based actin sliding depends on attachment and detachment kinetics and reaches a maximum when myosin-binding sites on actin saturate.
    Stewart TJ; Murthy V; Dugan SP; Baker JE
    J Biol Chem; 2021 Nov; 297(5):101178. PubMed ID: 34508779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimum number of myosin motors accounting for shortening velocity under zero load in skeletal muscle.
    Fusi L; Percario V; Brunello E; Caremani M; Bianco P; Powers JD; Reconditi M; Lombardi V; Piazzesi G
    J Physiol; 2017 Feb; 595(4):1127-1142. PubMed ID: 27763660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of myofilament force and loaded shortening by skeletal myosin binding protein C.
    Robinett JC; Hanft LM; Geist J; Kontrogianni-Konstantopoulos A; McDonald KS
    J Gen Physiol; 2019 May; 151(5):645-659. PubMed ID: 30705121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force and number of myosin motors during muscle shortening and the coupling with the release of the ATP hydrolysis products.
    Caremani M; Melli L; Dolfi M; Lombardi V; Linari M
    J Physiol; 2015 Aug; 593(15):3313-32. PubMed ID: 26041599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force-generating capacity of human myosin isoforms extracted from single muscle fibre segments.
    Li M; Larsson L
    J Physiol; 2010 Dec; 588(Pt 24):5105-14. PubMed ID: 20974679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Converter domain mutations in myosin alter structural kinetics and motor function.
    Gunther LK; Rohde JA; Tang W; Walton SD; Unrath WC; Trivedi DV; Muretta JM; Thomas DD; Yengo CM
    J Biol Chem; 2019 Feb; 294(5):1554-1567. PubMed ID: 30518549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical parameters of the molecular motor myosin II determined in permeabilised fibres from slow and fast skeletal muscles of the rabbit.
    Percario V; Boncompagni S; Protasi F; Pertici I; Pinzauti F; Caremani M
    J Physiol; 2018 Apr; 596(7):1243-1257. PubMed ID: 29148051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A physical model of ATP-induced actin-myosin movement in vitro.
    Tawada K; Sekimoto K
    Biophys J; 1991 Feb; 59(2):343-56. PubMed ID: 1826220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological Significance of the Force-Velocity Relation in Skeletal Muscle and Muscle Fibers.
    Sugi H; Ohno T
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31238505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation.
    Lan G; Sun SX
    Biophys J; 2005 Jun; 88(6):4107-17. PubMed ID: 15778440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Functional Characteristics of Myosin in Fast and Slow Skeletal Muscles.
    Shchepkin DV; Nabiev SR; Koubassova NA; Bershitsky SY; Kopylova GV
    Bull Exp Biol Med; 2020 Jul; 169(3):338-341. PubMed ID: 32743781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state force-velocity relation in the ATP-dependent sliding movement of myosin-coated beads on actin cables in vitro studied with a centrifuge microscope.
    Oiwa K; Chaen S; Kamitsubo E; Shimmen T; Sugi H
    Proc Natl Acad Sci U S A; 1990 Oct; 87(20):7893-7. PubMed ID: 2236007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sliding distance per ATP molecule hydrolyzed by myosin heads during isotonic shortening of skinned muscle fibers.
    Higuchi H; Goldman YE
    Biophys J; 1995 Oct; 69(4):1491-507. PubMed ID: 8534820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro.
    VanBuren P; Harris DE; Alpert NR; Warshaw DM
    Circ Res; 1995 Aug; 77(2):439-44. PubMed ID: 7614728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Load-dependent mechanical efficiency of individual myosin heads in skeletal muscle fibers activated by laser flash photolysis of caged calcium in the presence of a limited amount of ATP.
    Sugi H; Iwamoto H; Akimoto T; Ushitani H
    Adv Exp Med Biol; 1998; 453():557-66; discussion 567. PubMed ID: 9889868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single-fiber in vitro motility assay. In vitro sliding velocity of F-actin vs. unloaded shortening velocity in skinned muscle fibers.
    Thedinga E; Karim N; Kraft T; Brenner B
    J Muscle Res Cell Motil; 1999 Nov; 20(8):785-96. PubMed ID: 10730581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of the Z-disc protein α-actinin-3 impairs the mechanical stability of Actn3KO mouse fast-twitch muscle fibres without altering their contractile properties or twitch kinetics.
    Haug M; Reischl B; Nübler S; Kiriaev L; Mázala DAG; Houweling PJ; North KN; Friedrich O; Head SI
    Skelet Muscle; 2022 Jun; 12(1):14. PubMed ID: 35733150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.