BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 20192226)

  • 1. Partial steps of charge translocation in the nonpumping N139L mutant of Rhodobacter sphaeroides cytochrome c oxidase with a blocked D-channel.
    Siletsky SA; Zhu J; Gennis RB; Konstantinov AA
    Biochemistry; 2010 Apr; 49(14):3060-73. PubMed ID: 20192226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of glutamate-286 mutations in the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides and the cytochrome bo(3) ubiquinol oxidase from Escherichia coli.
    Egawa T; Ganesan K; Lin MT; Yu MA; Hosler JP; Yeh SR; Rousseau DL; Gennis RB
    Biochim Biophys Acta; 2011 Oct; 1807(10):1342-8. PubMed ID: 21684251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site.
    Belevich I; Borisov VB; Zhang J; Yang K; Konstantinov AA; Gennis RB; Verkhovsky MI
    Proc Natl Acad Sci U S A; 2005 Mar; 102(10):3657-62. PubMed ID: 15728392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton-dependent electron transfer from CuA to heme a and altered EPR spectra in mutants close to heme a of cytochrome oxidase.
    Mills DA; Xu S; Geren L; Hiser C; Qin L; Sharpe MA; McCracken J; Durham B; Millett F; Ferguson-Miller S
    Biochemistry; 2008 Nov; 47(44):11499-509. PubMed ID: 18847227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of protonation reactions during the catalytic cycle of cytochrome c oxidase.
    Nyquist RM; Heitbrink D; Bolwien C; Gennis RB; Heberle J
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8715-20. PubMed ID: 12851460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of mutations of arginine 94 on proton pumping, electron transfer, and superoxide anion generation in cytochrome b of the bc1 complex from Rhodobacter sphaeroides.
    Qu YG; Zhou F; Yu L; Yu CA
    J Biol Chem; 2013 Jan; 288(2):1047-54. PubMed ID: 23209298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the Mechanism of Membrane Potential Generation by Heme-Copper Respiratory Oxidases in a Real Time Mode.
    Siletsky SA
    Biochemistry (Mosc); 2023 Oct; 88(10):1513-1527. PubMed ID: 38105021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single-amino-acid lid renders a gas-tight compartment within a membrane-bound transporter.
    Salomonsson L; Lee A; Gennis RB; Brzezinski P
    Proc Natl Acad Sci U S A; 2004 Aug; 101(32):11617-21. PubMed ID: 15289603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into functional properties of the oxidized form of cytochrome c oxidase.
    Ishigami I; Sierra RG; Su Z; Peck A; Wang C; Poitevin F; Lisova S; Hayes B; Moss FR; Boutet S; Sublett RE; Yoon CH; Yeh SR; Rousseau DL
    Nat Commun; 2023 Sep; 14(1):5752. PubMed ID: 37717031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of 'high-energy' metastable state of the oxidized (O
    Jancura D; Tomkova A; Sztachova T; Berka V; Fabian M
    Arch Biochem Biophys; 2023 Oct; 747():109758. PubMed ID: 37748626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for functional properties of cytochrome
    Ishigami I; Sierra RG; Su Z; Peck A; Wang C; Poitevin F; Lisova S; Hayes B; Moss FR; Boutet S; Sublett RE; Yoon CH; Yeh SR; Rousseau DL
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oriented Insertion of ESR-Containing Hybrid Proteins in Proteoliposomes.
    Petrovskaya LE; Lukashev EP; Mamedov MD; Kryukova EA; Balashov SP; Dolgikh DA; Rubin AB; Kirpichnikov MP; Siletsky SA
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of direct electrometry in studies of microbial rhodopsins reconstituted in proteoliposomes.
    Siletsky SA; Mamedov MD; Lukashev EP; Balashov SP; Petrovskaya LE
    Biophys Rev; 2022 Aug; 14(4):771-778. PubMed ID: 36124261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton Pumping and Non-Pumping Terminal Respiratory Oxidases: Active Sites Intermediates of These Molecular Machines and Their Derivatives.
    Siletsky SA; Borisov VB
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the essential proton-pumping kinetic gates and decoupling mutations in cytochrome
    Liang R; Swanson JMJ; Wikström M; Voth GA
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5924-5929. PubMed ID: 28536198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing the electrogenicity of cytochrome c oxidase.
    Kim I; Warshel A
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7810-5. PubMed ID: 27357681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for Fast Electron Transfer between the High-Spin Haems in Cytochrome bd-I from Escherichia coli.
    Siletsky SA; Rappaport F; Poole RK; Borisov VB
    PLoS One; 2016; 11(5):e0155186. PubMed ID: 27152644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli.
    Siletsky SA; Zaspa AA; Poole RK; Borisov VB
    PLoS One; 2014; 9(4):e95617. PubMed ID: 24755641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The K(C) channel in the cbb3-type respiratory oxygen reductase from Rhodobacter capsulatus is required for both chemical and pumped protons.
    Yıldız GG; Gennis RB; Daldal F; Öztürk M
    J Bacteriol; 2014 May; 196(10):1825-32. PubMed ID: 24563037
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.