These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 20192289)
1. Møller-Plesset perturbation theory gradient in the generalized hybrid orbital quantum mechanical and molecular mechanical method. Jung J; Sugita Y; Ten-no S J Chem Phys; 2010 Feb; 132(8):084106. PubMed ID: 20192289 [TBL] [Abstract][Full Text] [Related]
2. Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method. Nagata T; Fedorov DG; Ishimura K; Kitaura K J Chem Phys; 2011 Jul; 135(4):044110. PubMed ID: 21806093 [TBL] [Abstract][Full Text] [Related]
3. An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: application to alanine tetrapeptide conformational analysis. Distasio RA; Steele RP; Rhee YM; Shao Y; Head-Gordon M J Comput Chem; 2007 Apr; 28(5):839-56. PubMed ID: 17219361 [TBL] [Abstract][Full Text] [Related]
4. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method. Nagata T; Fedorov DG; Li H; Kitaura K J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545 [TBL] [Abstract][Full Text] [Related]
5. An atomic orbital-based reformulation of energy gradients in second-order Møller-Plesset perturbation theory. Schweizer S; Doser B; Ochsenfeld C J Chem Phys; 2008 Apr; 128(15):154101. PubMed ID: 18433184 [TBL] [Abstract][Full Text] [Related]
6. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. Fedorov DG; Kitaura K J Chem Phys; 2004 Aug; 121(6):2483-90. PubMed ID: 15281845 [TBL] [Abstract][Full Text] [Related]
7. Quantum mechanical/molecular mechanical/continuum style solvation model: second order Møller-Plesset perturbation theory. Thellamurege NM; Si D; Cui F; Li H J Chem Phys; 2014 May; 140(17):174115. PubMed ID: 24811633 [TBL] [Abstract][Full Text] [Related]
8. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: application to symmetry breaking problems. Bozkaya U J Chem Phys; 2011 Dec; 135(22):224103. PubMed ID: 22168676 [TBL] [Abstract][Full Text] [Related]
9. Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory. Bozkaya U; Turney JM; Yamaguchi Y; Schaefer HF; Sherrill CD J Chem Phys; 2011 Sep; 135(10):104103. PubMed ID: 21932872 [TBL] [Abstract][Full Text] [Related]
10. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory. Bozkaya U J Chem Phys; 2013 Sep; 139(10):104116. PubMed ID: 24050337 [TBL] [Abstract][Full Text] [Related]
11. Hybrid correlation models based on active-space partitioning: correcting second-order Moller-Plesset perturbation theory for bond-breaking reactions. Bochevarov AD; Sherrill CD J Chem Phys; 2005 Jun; 122(23):234110. PubMed ID: 16008433 [TBL] [Abstract][Full Text] [Related]
12. A hybrid scheme for the resolution-of-the-identity approximation in second-order Møller-Plesset linear-r(12) perturbation theory. Klopper W J Chem Phys; 2004 Jun; 120(23):10890-5. PubMed ID: 15268119 [TBL] [Abstract][Full Text] [Related]
13. Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria. Doser B; Lambrecht DS; Kussmann J; Ochsenfeld C J Chem Phys; 2009 Feb; 130(6):064107. PubMed ID: 19222267 [TBL] [Abstract][Full Text] [Related]
14. Analytic energy gradients for the orbital-optimized second-order Møller-Plesset perturbation theory. Bozkaya U; Sherrill CD J Chem Phys; 2013 May; 138(18):184103. PubMed ID: 23676025 [TBL] [Abstract][Full Text] [Related]
15. An efficient atomic orbital based second-order Møller-Plesset gradient program. Saebø S; Baker J; Wolinski K; Pulay P J Chem Phys; 2004 Jun; 120(24):11423-31. PubMed ID: 15268176 [TBL] [Abstract][Full Text] [Related]
16. A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin. Nagata T; Fedorov DG; Sawada T; Kitaura K; Gordon MS J Chem Phys; 2011 Jan; 134(3):034110. PubMed ID: 21261333 [TBL] [Abstract][Full Text] [Related]
17. Analytical energy gradients for local second-order Møller-Plesset perturbation theory using density fitting approximations. Schütz M; Werner HJ; Lindh R; Manby FR J Chem Phys; 2004 Jul; 121(2):737-50. PubMed ID: 15260600 [TBL] [Abstract][Full Text] [Related]
18. Resolution of the identity atomic orbital Laplace transformed second order Møller-Plesset theory for nonconducting periodic systems. Izmaylov AF; Scuseria GE Phys Chem Chem Phys; 2008 Jun; 10(23):3421-9. PubMed ID: 18535725 [TBL] [Abstract][Full Text] [Related]
19. Analytic energy gradient in combined second-order Møller-Plesset perturbation theory and polarizable force field calculation. Li H J Phys Chem A; 2011 Oct; 115(42):11824-31. PubMed ID: 21905697 [TBL] [Abstract][Full Text] [Related]