These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 20192499)

  • 1. A compact multipurpose nanomanipulator for use inside a scanning electron microscope.
    Heeres EC; Katan AJ; van Es MH; Beker AF; Hesselberth M; van der Zalm DJ; Oosterkamp TH
    Rev Sci Instrum; 2010 Feb; 81(2):023704. PubMed ID: 20192499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-cost nanomanipulator for in situ experiments in a SEM.
    Nakabayashi D; Silva PC; González JC; Rodrigues V; Ugarte D
    Microsc Microanal; 2006 Aug; 12(4):311-6. PubMed ID: 16842643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomanipulator-assisted fabrication and characterization of carbon nanotubes inside scanning electron microscope.
    Lim SC; Kim KS; Lee IB; Jeong SY; Cho S; Yoo JE; Lee YH
    Micron; 2005; 36(5):471-6. PubMed ID: 15896968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An alternative flat scanner and micropositioning method for scanning probe microscope.
    Cai W; Shang G; Zhou Y; Xu P; Yao J
    Rev Sci Instrum; 2010 Dec; 81(12):123701. PubMed ID: 21198026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a dilution refrigerator cooled scanning force microscope.
    Gildemeister AE; Ihn T; Barengo C; Studerus P; Ensslin K
    Rev Sci Instrum; 2007 Jan; 78(1):013704. PubMed ID: 17503925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures.
    Long R; Chen J; Lim JH; Wiley JB; Zhou W
    Nanotechnology; 2009 Jul; 20(28):285306. PubMed ID: 19546502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope.
    Polyakov B; Dorogin LM; Vlassov S; Kink I; Romanov AE; Lohmus R
    Micron; 2012 Nov; 43(11):1140-6. PubMed ID: 22341617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cryogenic Quadraprobe scanning tunneling microscope system with fabrication capability for nanotransport research.
    Kim TH; Wang Z; Wendelken JF; Weitering HH; Li W; Li AP
    Rev Sci Instrum; 2007 Dec; 78(12):123701. PubMed ID: 18163731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of probe-to-probe approach method for an independently controlled dual-probe scanning tunneling microscope.
    Matsui A; Shigeta Y
    Rev Sci Instrum; 2007 Oct; 78(10):106107. PubMed ID: 17979463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: from individual atoms to nanowires.
    Qin S; Kim TH; Wang Z; Li AP
    Rev Sci Instrum; 2012 Jun; 83(6):063704. PubMed ID: 22755631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomachining with a mechanical manipulation system.
    Chang M; Deka JR; Lin CH
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6266-73. PubMed ID: 19205193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel planar field emission of ultra-thin individual carbon nanotubes.
    Song X; Gao J; Fu Q; Xu J; Zhao Q; Yu D
    Nanotechnology; 2009 Oct; 20(40):405208. PubMed ID: 19752498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formation and utility of sub-angstrom to nanometer-sized electron probes in the aberration-corrected transmission electron microscope at the University of Illinois.
    Wen J; Mabon J; Lei C; Burdin S; Sammann E; Petrov I; Shah AB; Chobpattana V; Zhang J; Ran K; Zuo JM; Mishina S; Aoki T
    Microsc Microanal; 2010 Apr; 16(2):183-93. PubMed ID: 20187990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of transmission electron microscopes to nanometre-sized fabrication by means of electron beam-induced deposition.
    Shimojo M; Mitsuishi K; Tanaka M; Han M; Furuya K
    J Microsc; 2004 Apr; 214(Pt 1):76-9. PubMed ID: 15049871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact very low temperature scanning tunneling microscope with mechanically driven horizontal linear positioning stage.
    Suderow H; Guillamon I; Vieira S
    Rev Sci Instrum; 2011 Mar; 82(3):033711. PubMed ID: 21456755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotip fabrication of zinc oxide nanorods and their enhanced field emission properties.
    Yao IC; Lin P; Tseng TY
    Nanotechnology; 2009 Mar; 20(12):125202. PubMed ID: 19420460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact variable-temperature scanning force microscope.
    Chuang TM; de Lozanne A
    Rev Sci Instrum; 2007 May; 78(5):053710. PubMed ID: 17552828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of conjugated polymers nanostructures via direct near-field optical lithography.
    Cacialli F; Riehn R; Downes A; Latini G; Charas A; Morgado J
    Ultramicroscopy; 2004 Aug; 100(3-4):449-55. PubMed ID: 15231338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ measurements on individual thin carbon nanotubes using nanomanipulators inside a scanning electron microscope.
    Wei X; Chen Q; Peng L; Cui R; Li Y
    Ultramicroscopy; 2010 Feb; 110(3):182-9. PubMed ID: 19962243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A metrological large range atomic force microscope with improved performance.
    Dai G; Wolff H; Pohlenz F; Danzebrink HU
    Rev Sci Instrum; 2009 Apr; 80(4):043702. PubMed ID: 19405661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.