These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

561 related articles for article (PubMed ID: 20192739)

  • 41. Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.).
    Ke S; Liu XJ; Luan X; Yang W; Zhu H; Liu G; Zhang G; Wang S
    Gene; 2018 Oct; 675():285-300. PubMed ID: 29969697
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide association study of agronomic traits in rice cultivated in temperate regions.
    Reig-Valiente JL; Marqués L; Talón M; Domingo C
    BMC Genomics; 2018 Sep; 19(1):706. PubMed ID: 30253735
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of QTLs for panicle-related traits using an
    Li G; Cheng Y; Yin M; Yang J; Ying J; Zhu C
    PeerJ; 2021; 9():e12504. PubMed ID: 34909275
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tillering and panicle branching genes in rice.
    Liang WH; Shang F; Lin QT; Lou C; Zhang J
    Gene; 2014 Mar; 537(1):1-5. PubMed ID: 24345551
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Uncovering the genetic mechanisms regulating panicle architecture in rice with GPWAS and GWAS.
    Zhong H; Liu S; Meng X; Sun T; Deng Y; Kong W; Peng Z; Li Y
    BMC Genomics; 2021 Jan; 22(1):86. PubMed ID: 33509071
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative disease resistance and quantitative resistance Loci in breeding.
    St Clair DA
    Annu Rev Phytopathol; 2010; 48():247-68. PubMed ID: 19400646
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MicroRNAs meet with quantitative trait loci: Small powerful players in regulating quantitative yield traits in rice.
    Peng T; Teotia S; Tang G; Zhao Q
    Wiley Interdiscip Rev RNA; 2019 Nov; 10(6):e1556. PubMed ID: 31207122
    [TBL] [Abstract][Full Text] [Related]  

  • 48. OsSGL, a novel pleiotropic stress-related gene enhances grain length and yield in rice.
    Wang M; Lu X; Xu G; Yin X; Cui Y; Huang L; Rocha PSCF; Xia X
    Sci Rep; 2016 Dec; 6():38157. PubMed ID: 27917884
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Marker-assisted selection for grain number and yield-related traits of rice (
    Gouda G; Gupta MK; Donde R; Mohapatra T; Vadde R; Behera L
    Physiol Mol Biol Plants; 2020 May; 26(5):885-898. PubMed ID: 32377039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication.
    Zhou Y; Zhu J; Li Z; Yi C; Liu J; Zhang H; Tang S; Gu M; Liang G
    Genetics; 2009 Sep; 183(1):315-24. PubMed ID: 19546322
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice.
    Terao T; Nagata K; Morino K; Hirose T
    Theor Appl Genet; 2010 Mar; 120(5):875-93. PubMed ID: 20151298
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants.
    Gupta PK; Rustgi S; Kumar N
    Genome; 2006 Jun; 49(6):565-71. PubMed ID: 16936836
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A mathematical model of phloem sucrose transport as a new tool for designing rice panicle structure for high grain yield.
    Seki M; Feugier FG; Song XJ; Ashikari M; Nakamura H; Ishiyama K; Yamaya T; Inari-Ikeda M; Kitano H; Satake A
    Plant Cell Physiol; 2015 Apr; 56(4):605-19. PubMed ID: 25516572
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fine mapping and gene cloning in the post-NGS era: advances and prospects.
    Jaganathan D; Bohra A; Thudi M; Varshney RK
    Theor Appl Genet; 2020 May; 133(5):1791-1810. PubMed ID: 32040676
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic and molecular dissection of quantitative traits in rice.
    Yano M; Sasaki T
    Plant Mol Biol; 1997 Sep; 35(1-2):145-53. PubMed ID: 9291968
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 2Gs and plant architecture: breaking grain yield ceiling through breeding approaches for next wave of revolution in rice (
    Singh G; Kaur N; Khanna R; Kaur R; Gudi S; Kaur R; Sidhu N; Vikal Y; Mangat GS
    Crit Rev Biotechnol; 2024 Feb; 44(1):139-162. PubMed ID: 36176065
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Disease resistance in rice and the role of molecular breeding in protecting rice crops against diseases.
    Fahad S; Nie L; Khan FA; Chen Y; Hussain S; Wu C; Xiong D; Jing W; Saud S; Khan FA; Li Y; Wu W; Khan F; Hassan S; Manan A; Jan A; Huang J
    Biotechnol Lett; 2014 Jul; 36(7):1407-20. PubMed ID: 24658743
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comparative study of competitiveness between different genotypes of weedy rice (Oryza sativa) and cultivated rice.
    Dai L; Dai W; Song X; Lu B; Qiang S
    Pest Manag Sci; 2014 Jan; 70(1):113-22. PubMed ID: 23512472
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.
    Song XJ; Huang W; Shi M; Zhu MZ; Lin HX
    Nat Genet; 2007 May; 39(5):623-30. PubMed ID: 17417637
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relationships of rice yield and quality based on genotype by trait (GT) biplot.
    Sharifi P; Ebadi AA
    An Acad Bras Cienc; 2018; 90(1):343-356. PubMed ID: 29641764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.