These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20192969)

  • 1. Aqueous films limit bacterial cell motility and colony expansion on partially saturated rough surfaces.
    Wang G; Or D
    Environ Microbiol; 2010 May; 12(5):1363-73. PubMed ID: 20192969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial flagellar motility on hydrated rough surfaces controlled by aqueous film thickness and connectedness.
    Tecon R; Or D
    Sci Rep; 2016 Jan; 6():19409. PubMed ID: 26757676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration-controlled bacterial motility and dispersal on surfaces.
    Dechesne A; Wang G; Gülez G; Or D; Smets BF
    Proc Natl Acad Sci U S A; 2010 Aug; 107(32):14369-72. PubMed ID: 20660312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of microbial growth and coexistence on variably saturated rough surfaces.
    Long T; Or D
    Microb Ecol; 2009 Aug; 58(2):262-75. PubMed ID: 19352771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Method Reveals a Narrow Phylogenetic Distribution of Bacterial Dispersers in Environmental Communities Exposed to Low-Hydration Conditions.
    Krüger US; Bak F; Aamand J; Nybroe O; Badawi N; Smets BF; Dechesne A
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial scales of soil bacterial diversity--the size of a clone.
    Grundmann GL
    FEMS Microbiol Ecol; 2004 May; 48(2):119-27. PubMed ID: 19712395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration dynamics promote bacterial coexistence on rough surfaces.
    Wang G; Or D
    ISME J; 2013 Feb; 7(2):395-404. PubMed ID: 23051694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Pressurized Porous Surface Model: an improved tool to study bacterial behavior under a wide range of environmentally relevant matric potentials.
    Gülez G; Dechesne A; Smets BF
    J Microbiol Methods; 2010 Sep; 82(3):324-6. PubMed ID: 20599568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glass micromodel study of bacterial dispersion in spatially periodic porous networks.
    Lanning LM; Ford RM
    Biotechnol Bioeng; 2002 Jun; 78(5):556-66. PubMed ID: 12115125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial community composition in soils of Northern Victoria Land, Antarctica.
    Niederberger TD; McDonald IR; Hacker AL; Soo RM; Barrett JE; Wall DH; Cary SC
    Environ Microbiol; 2008 Jul; 10(7):1713-24. PubMed ID: 18373679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment.
    Costello EK; Schmidt SK
    Environ Microbiol; 2006 Aug; 8(8):1471-86. PubMed ID: 16872409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions.
    Dechesne A; Or D; Gülez G; Smets BF
    Appl Environ Microbiol; 2008 Aug; 74(16):5195-200. PubMed ID: 18586968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational improvements reveal great bacterial diversity and high metal toxicity in soil.
    Gans J; Wolinsky M; Dunbar J
    Science; 2005 Aug; 309(5739):1387-90. PubMed ID: 16123304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.
    Wolf AB; Vos M; de Boer W; Kowalchuk GA
    PLoS One; 2013; 8(12):e83661. PubMed ID: 24391805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH).
    Borer B; Ataman M; Hatzimanikatis V; Or D
    PLoS Comput Biol; 2019 Jun; 15(6):e1007127. PubMed ID: 31216273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial diversity promotes community stability and functional resilience after perturbation.
    Girvan MS; Campbell CD; Killham K; Prosser JI; Glover LA
    Environ Microbiol; 2005 Mar; 7(3):301-13. PubMed ID: 15683391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling water flow and bacterial transport in undisturbed lysimeters under irrigations of dairy shed effluent and water using HYDRUS-1D.
    Jiang S; Pang L; Buchan GD; Simůnek J; Noonan MJ; Close ME
    Water Res; 2010 Feb; 44(4):1050-61. PubMed ID: 19775719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. INDISIM, an individual-based discrete simulation model to study bacterial cultures.
    Ginovart M; López D; Valls J
    J Theor Biol; 2002 Jan; 214(2):305-19. PubMed ID: 11812180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes.
    Lebert I; Dussap CG; Lebert A
    Int J Food Microbiol; 2005 Jul; 102(3):305-22. PubMed ID: 16014298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces.
    Tecon R; Ebrahimi A; Kleyer H; Erev Levi S; Or D
    Proc Natl Acad Sci U S A; 2018 Sep; 115(39):9791-9796. PubMed ID: 30209211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.