These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2019326)

  • 1. Biogenesis of transverse tubules in skeletal muscle in vitro.
    Flucher BE; Terasaki M; Chin HM; Beeler TJ; Daniels MP
    Dev Biol; 1991 May; 145(1):77-90. PubMed ID: 2019326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biogenesis of transverse tubules: immunocytochemical localization of a transverse tubular protein (TS28) and a sarcolemmal protein (SL50) in rabbit skeletal muscle developing in situ.
    Yuan S; Arnold W; Jorgensen AO
    J Cell Biol; 1990 Apr; 110(4):1187-98. PubMed ID: 2139033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils.
    Flucher BE; Takekura H; Franzini-Armstrong C
    Dev Biol; 1993 Nov; 160(1):135-47. PubMed ID: 8224530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of novel proteins unique to either transverse tubules (TS28) or the sarcolemma (SL50) in rabbit skeletal muscle.
    Jorgensen AO; Arnold W; Shen AC; Yuan SH; Gaver M; Campbell KP
    J Cell Biol; 1990 Apr; 110(4):1173-85. PubMed ID: 2157716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser confocal scanning microscopy of the surface membrane/T-tubular system and the sarcoplasmic reticulum in insect striated muscle stained with DilC18(3).
    Baumann O; Kitazawa T; Somlyo AP
    J Struct Biol; 1990; 105(1-3):154-61. PubMed ID: 2100146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinated development of myofibrils, sarcoplasmic reticulum and transverse tubules in normal and dysgenic mouse skeletal muscle, in vivo and in vitro.
    Flucher BE; Phillips JL; Powell JA; Andrews SB; Daniels MP
    Dev Biol; 1992 Apr; 150(2):266-80. PubMed ID: 1551475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-system formation in cultured rat skeletal tissue.
    Schiaffino S; Cantini M; Sartore S
    Tissue Cell; 1977; 9(3):437-46. PubMed ID: 929575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid phase of transverse tubule membranes from skeletal muscle. An electron paramagnetic resonance study.
    Hidalgo C
    Biophys J; 1985 Jun; 47(6):757-64. PubMed ID: 2990585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle. Are caveolae the mouths of the transverse tubule system?
    Zampighi G; Vergara J; Ramón F
    J Cell Biol; 1975 Mar; 64(3):734-40. PubMed ID: 1080153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of transverse tubules in insulin stimulated muscle glucose transport.
    Dohm GL; Dolan PL; Frisell WR; Dudek RW
    J Cell Biochem; 1993 May; 52(1):1-7. PubMed ID: 8320268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin unmasks a COOH-terminal Glut4 epitope and increases glucose transport across T-tubules in skeletal muscle.
    Wang W; Hansen PA; Marshall BA; Holloszy JO; Mueckler M
    J Cell Biol; 1996 Oct; 135(2):415-30. PubMed ID: 8896598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional reconstruction and analysis of the tubular system of vertebrate skeletal muscle.
    Jayasinghe I; Launikonis BS
    J Cell Sci; 2013 Sep; 126(Pt 17):4048-58. PubMed ID: 23813954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ.
    Yuan SH; Arnold W; Jorgensen AO
    J Cell Biol; 1991 Jan; 112(2):289-301. PubMed ID: 1846372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Differentiational profiles of skeletal muscle internal membrane systems directly related to excitation-contraction coupling].
    Takekura H; Yoshioka T
    Nihon Seirigaku Zasshi; 1993; 55(10):392-405. PubMed ID: 8277433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective impairment in GLUT4 translocation to transverse tubules in skeletal muscle of streptozotocin-induced diabetic rats.
    Dombrowski L; Roy D; Marette A
    Diabetes; 1998 Jan; 47(1):5-12. PubMed ID: 9421368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the activity of the transverse tubule Mg(2+)-ATPase from frog skeletal muscle by a monoclonal antibody in vitro.
    Rosemblatt MS; Pérez G; Jaimovich E
    Mol Cell Biochem; 1991 Aug; 106(2):99-107. PubMed ID: 1833628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous ion diffusion within skeletal muscle transverse tubule networks.
    Shorten PR; Soboleva TK
    Theor Biol Med Model; 2007 May; 4():18. PubMed ID: 17509153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chloride withdrawal on the geometry of the T-tubules in amphibian and mammalian muscle.
    Dulhunty A
    J Membr Biol; 1982; 67(2):81-90. PubMed ID: 6808143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell surface changes during muscle differentiation in vitro: a study with the probe 2,4,6-trinitrobenzene sulphonate.
    Sartore S; Tarone G; Cantini M; Schiaffino S; Comoglio PM
    Cell Differ; 1979 Feb; 8(1):1-9. PubMed ID: 378411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of transverse tubule architecture in the middle and myotendinous junctional regions in developing rat skeletal muscle fibers.
    Yamashita S; McGrath KF; Yuki A; Tamaki H; Kasuga N; Takekura H
    J Muscle Res Cell Motil; 2007; 28(2-3):141-51. PubMed ID: 17610135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.