BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 20193654)

  • 1. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered mechanism of the alkanesulfonate FMN reductase with the monooxygenase enzyme.
    Gao B; Ellis HR
    Biochem Biophys Res Commun; 2005 Jun; 331(4):1137-45. PubMed ID: 15882995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M; Fontecave M; Macherel D; Covès J
    Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction.
    Hodgson AV; Strobel HW
    Anal Biochem; 1996 Dec; 243(1):154-7. PubMed ID: 8954538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman study on the oxidized and anionic semiquinone forms of flavocytochrome b2 and L-lactate monooxygenase. Influence of the structure and environment of the isoalloxazine ring on the flavin function.
    Tegoni M; Gervais M; Desbois A
    Biochemistry; 1997 Jul; 36(29):8932-46. PubMed ID: 9220981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox control of the catalytic cycle of flavocytochrome P-450 BM3.
    Daff SN; Chapman SK; Turner KL; Holt RA; Govindaraj S; Poulos TL; Munro AW
    Biochemistry; 1997 Nov; 36(45):13816-23. PubMed ID: 9374858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli.
    Coves J; Zeghouf M; Macherel D; Guigliarelli B; Asso M; Fontecave M
    Biochemistry; 1997 May; 36(19):5921-8. PubMed ID: 9153434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction mechanism and kinetics of the two-component flavoprotein dimethyl sulfone monooxygenase system: Using hydrogen peroxide for monooxygenation and substrate cleavage.
    Mangkalee M; Oonanant W; Aonbangkhen C; Pimviriyakul P; Tinikul R; Chaiyen P; Insin N; Sucharitakul J
    FEBS J; 2023 Nov; 290(21):5171-5195. PubMed ID: 37522421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavin reductase P: structure of a dimeric enzyme that reduces flavin.
    Tanner JJ; Lei B; Tu SC; Krause KL
    Biochemistry; 1996 Oct; 35(42):13531-9. PubMed ID: 8885832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox potential and equilibria in the reductive half-reaction of Vibrio harveyi NADPH-FMN oxidoreductase.
    Lei B; Wang H; Yu Y; Tu SC
    Biochemistry; 2005 Jan; 44(1):261-7. PubMed ID: 15628867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium.
    Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW
    Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-component flavin-dependent monooxygenase involved in actinorhodin biosynthesis in Streptomyces coelicolor.
    Valton J; Filisetti L; Fontecave M; Nivière V
    J Biol Chem; 2004 Oct; 279(43):44362-9. PubMed ID: 15297451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic mechanism and quaternary structure of Aminobacter aminovorans NADH:flavin oxidoreductase: an unusual flavin reductase with bound flavin.
    Russell TR; Demeler B; Tu SC
    Biochemistry; 2004 Feb; 43(6):1580-90. PubMed ID: 14769034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase.
    Kantz A; Chin F; Nallamothu N; Nguyen T; Gassner GT
    Arch Biochem Biophys; 2005 Oct; 442(1):102-16. PubMed ID: 16140257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavin specificity and subunit interaction of Vibrio fischeri general NAD(P)H-flavin oxidoreductase FRG/FRase I.
    Tang CK; Jeffers CE; Nichols JC; Tu SC
    Arch Biochem Biophys; 2001 Aug; 392(1):110-6. PubMed ID: 11469801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.