These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20193750)

  • 1. A method for calibration of bone driver transducers to measure the mastoid impedance.
    Weece R; Allen J
    Hear Res; 2010 May; 263(1-2):216-23. PubMed ID: 20193750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.
    Lewis GK; Olbricht WL
    Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-acoustic performance of the new bone vibrator Radioear B81: a comparison with the conventional Radioear B71.
    Jansson KJ; Håkansson B; Johannsen L; Tengstrand T
    Int J Audiol; 2015 May; 54(5):334-40. PubMed ID: 25519145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A system for generating a variable mechanical impedance and its use in an investigation of the electromechanical properties of the B71 audiometric bone vibrator.
    Haughton PM
    Br J Audiol; 1982 Feb; 16(1):1-7. PubMed ID: 7055651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Verification of impedance measurements by a volumetric and electromechanical model.
    Eliachar I; Danino Y; Braun S; Meged D; Joachims H; Frank A
    Scand Audiol Suppl; 1983; 17():21-6. PubMed ID: 6577553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of mechanical properties of human trabecular bone by electrical measurements.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Jurvelin JS; Lappalainen R
    Physiol Meas; 2005 Apr; 26(2):S119-31. PubMed ID: 15798225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiscale model for array of capacitive micromachined ultrasonic transducers.
    Meynier C; Teston F; Certon D
    J Acoust Soc Am; 2010 Nov; 128(5):2549-61. PubMed ID: 21110553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic method for calibration of audiometric bone vibrators.
    Margolis RH; Stiepan SM
    J Acoust Soc Am; 2012 Feb; 131(2):1221-5. PubMed ID: 22352496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer functions of US transducers for harmonic imaging and bubble responses.
    van Neer PL; Matte G; Sijl J; Borsboom JM; de Jong N
    Ultrasonics; 2007 Nov; 46(4):336-40. PubMed ID: 17631929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-port network analysis and modeling of a balanced armature receiver.
    Kim N; Allen JB
    Hear Res; 2013 Jul; 301():156-67. PubMed ID: 23485425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanical impedance of the human mastoid and forehead--a critique of the mechanical coupler of the IEC373].
    Takeuchi Y
    Nihon Jibiinkoka Gakkai Kaiho; 1990 Sep; 93(9):1363-71. PubMed ID: 2254810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equivalent circuit for broadband underwater transducers.
    Ramesh R; Ebenezer DD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2079-83. PubMed ID: 18986904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A lumped-circuit model for the radiation impedance of a circular piston in a rigid baffle.
    Bozkurt A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2046-52. PubMed ID: 18986901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method for nonlinear characterization of radio frequency coils made of high temperature superconducting material in view of magnetic resonance imaging applications.
    Girard O; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2007 Dec; 78(12):124703. PubMed ID: 18163742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of human uterine cervical electrical impedance measurements derived using two tetrapolar probes of different sizes.
    Gandhi SV; Walker DC; Brown BH; Anumba DO
    Biomed Eng Online; 2006 Nov; 5():62. PubMed ID: 17125510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for the calibration of bone conduction transducers at frequencies from 5 to 20 kHz.
    Remenschneider AK; Cheng JT; Rosowski JJ
    J Acoust Soc Am; 2022 May; 151(5):2945. PubMed ID: 35649943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impedance spectroscopy of human erythrocytes: system calibration and nonlinear modeling.
    Bao JZ; Davis CC; Schmukler RE
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):364-78. PubMed ID: 8375873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of Cole parameters in multiple frequency bioelectrical impedance analysis using only the measurement of impedances.
    Ward LC; Essex T; Cornish BH
    Physiol Meas; 2006 Sep; 27(9):839-50. PubMed ID: 16868350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.