BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 20193845)

  • 1. Application of array comparative genomic hybridization in chronic myeloid leukemia.
    Park S; Koh Y; Jung SH; Chung YJ
    Methods Mol Biol; 2013; 973():55-68. PubMed ID: 23412783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two rare cases of acute myeloid leukemia with t(8;16)(p11.2;p13.3) and 1q duplication: case presentation and literature review.
    Liu M; Ren Y; Wang X; Lu X; Li M; Kim YM; Li S; Zhang L
    Mol Cytogenet; 2020; 13():37. PubMed ID: 32863883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical and genomic features of adult and paediatric acute leukaemias with ophthalmic manifestations.
    Skarsgård LS; Andersson MK; Persson M; Larsen AC; Coupland SE; Stenman G; Heegaard S
    BMJ Open Ophthalmol; 2019; 4(1):e000362. PubMed ID: 31673633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide DNA Copy Number Analysis of Acute Lymphoblastic Leukemia Identifies New Genetic Markers Associated with Clinical Outcome.
    Forero-Castro M; Robledo C; Benito R; Abáigar M; África Martín A; Arefi M; Fuster JL; de Las Heras N; Rodríguez JN; Quintero J; Riesco S; Hermosín L; de la Fuente I; Recio I; Ribera J; Labrador J; Alonso JM; Olivier C; Sierra M; Megido M; Corchete-Sánchez LA; Ciudad Pizarro J; García JL; Ribera JM; Hernández-Rivas JM
    PLoS One; 2016; 11(2):e0148972. PubMed ID: 26872047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Array-based comparative genomic hybridization detects copy number variations with prognostic relevance in 80% of ALL with normal karyotype or failed chromosome analysis.
    Mühlbacher V; Haferlach T; Kern W; Zenger M; Schnittger S; Haferlach C
    Leukemia; 2016 Feb; 30(2):318-24. PubMed ID: 26449660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel genomic aberrations in AML-M5 in a level of array CGH.
    Zhang R; Lee JY; Wang X; Xu W; Hu X; Lu X; Niu Y; Tang R; Li S; Li Y
    PLoS One; 2014; 9(4):e87637. PubMed ID: 24727659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of clinically important chromosomal aberrations in acute myeloid leukemia by array-based comparative genomic hybridization.
    Mehrotra M; Luthra R; Ravandi F; Sargent RL; Barkoh BA; Abraham R; Mishra BM; Medeiros LJ; Patel KP
    Leuk Lymphoma; 2014 Nov; 55(11):2538-48. PubMed ID: 24446873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Throughput FISH Analysis: A New, Sensitive Option For Evaluation of Hematological Malignancies.
    Savlı H; Uzülmez N; Ilkay Z; Yavuz D; Sünnetçi D; Hacıhanifioğlu A; Cine N
    Turk J Haematol; 2013 Jun; 30(2):122-8. PubMed ID: 24385774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New recurrent balanced translocations in acute myeloid leukemia and myelodysplastic syndromes: cancer and leukemia group B 8461.
    Walker A; Mrózek K; Kohlschmidt J; Rao KW; Pettenati MJ; Sterling LJ; Marcucci G; Carroll AJ; Bloomfield CD;
    Genes Chromosomes Cancer; 2013 Apr; 52(4):385-401. PubMed ID: 23225546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular-based classification of acute myeloid leukemia and its role in directing rational therapy: personalized medicine for profoundly promiscuous proliferations.
    Wertheim GB; Hexner E; Bagg A
    Mol Diagn Ther; 2012 Dec; 16(6):357-69. PubMed ID: 23184342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network analysis of reverse phase protein expression data: characterizing protein signatures in acute myeloid leukemia cytogenetic categories t(8;21) and inv(16).
    York H; Kornblau SM; Qutub AA
    Proteomics; 2012 Jul; 12(13):2084-93. PubMed ID: 22623292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and numerical abnormalities resolved in one-step analysis: the most common chromosomal rearrangements detected by comparative genomic hybridization in childhood acute lymphoblastic leukemia.
    Kowalczyk JR; Babicz M; Gaworczyk A; Lejman M; Winnicka D; Styka B; Jaszczuk I
    Cancer Genet Cytogenet; 2010 Jul; 200(2):161-6. PubMed ID: 20620600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH.
    Schoch C; Haferlach T; Bursch S; Gerstner D; Schnittger S; Dugas M; Kern W; Löffler H; Hiddemann W
    Genes Chromosomes Cancer; 2002 Sep; 35(1):20-9. PubMed ID: 12203786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Array CGH in human leukemia: from somatics to genetics.
    van der Veken LT; Buijs A
    Cytogenet Genome Res; 2011; 135(3-4):260-70. PubMed ID: 21893961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytogenetics in acute leukemia.
    Mrózek K; Heerema NA; Bloomfield CD
    Blood Rev; 2004 Jun; 18(2):115-36. PubMed ID: 15010150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Array comparative genomic hybridization analysis of adult acute leukemia patients.
    Yasar D; Karadogan I; Alanoglu G; Akkaya B; Luleci G; Salim O; Timuragaoglu A; Toruner GA; Berker-Karauzum S
    Cancer Genet Cytogenet; 2010 Mar; 197(2):122-9. PubMed ID: 20193845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute lymphoblastic leukemias with normal karyotypes are not without genomic aberrations.
    Usvasalo A; Räty R; Harila-Saari A; Koistinen P; Savolainen ER; Vettenranta K; Knuutila S; Elonen E; Saarinen-Pihkala UM
    Cancer Genet Cytogenet; 2009 Jul; 192(1):10-7. PubMed ID: 19480931
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.