BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 20194054)

  • 1. Path control: a method for patient-cooperative robot-aided gait rehabilitation.
    Duschau-Wicke A; von Zitzewitz J; Caprez A; Lunenburger L; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):38-48. PubMed ID: 20194054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patient-cooperative strategies for robot-aided treadmill training: first experimental results.
    Riener R; Lünenburger L; Jezernik S; Anderschitz M; Colombo G; Dietz V
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):380-94. PubMed ID: 16200761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computerized visual feedback: an adjunct to robotic-assisted gait training.
    Banz R; Bolliger M; Colombo G; Dietz V; Lünenburger L
    Phys Ther; 2008 Oct; 88(10):1135-45. PubMed ID: 18772279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for automatic treadmill speed adaptation.
    von Zitzewitz J; Bernhardt M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
    Vallery H; van Asseldonk EH; Buss M; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Walking with WALK! A cooperative, patient-driven neuroprosthetic system.
    Fuhr T; Quintern J; Riener R; Schmidt G
    IEEE Eng Med Biol Mag; 2008; 27(1):38-48. PubMed ID: 18270049
    [No Abstract]   [Full Text] [Related]  

  • 8. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury.
    Emken JL; Harkema SJ; Beres-Jones JA; Ferreira CK; Reinkensmeyer DJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):322-34. PubMed ID: 18232376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training.
    Duschau-Wicke A; Caprez A; Riener R
    J Neuroeng Rehabil; 2010 Sep; 7():43. PubMed ID: 20828422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
    Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual reality aided training of combined arm and leg movements of children with CP.
    Riener R; Dislaki E; Keller U; Koenig A; Van Hedel H; Nagle A
    Stud Health Technol Inform; 2013; 184():349-55. PubMed ID: 23400183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD.
    Aurich-Schuler T; Grob F; van Hedel HJA; Labruyère R
    J Neuroeng Rehabil; 2017 Jul; 14(1):76. PubMed ID: 28705170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial.
    Schück A; Labruyère R; Vallery H; Riener R; Duschau-Wicke A
    J Neuroeng Rehabil; 2012 May; 9():31. PubMed ID: 22650320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive impedance control of a robotic orthosis for gait rehabilitation.
    Hussain S; Xie SQ; Jamwal PK
    IEEE Trans Cybern; 2013 Jun; 43(3):1025-34. PubMed ID: 23193241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of a robotic device for gait training and rehabilitation.
    Siddiqi N; Gazzani F; Des Jardins J; Chao EY
    Stud Health Technol Inform; 1997; 39():440-9. PubMed ID: 10168939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in muscle activation patterns during robotic-assisted walking.
    Hidler JM; Wall AE
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):184-93. PubMed ID: 15621324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis.
    Hidler J; Wisman W; Neckel N
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1251-9. PubMed ID: 18849098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of two mobile gait rehabilitation systems.
    Seo KH; Lee JJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):156-66. PubMed ID: 19228564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation parameter optimization for functional electrical stimulation assisted gait in human spinal cord injury using response surface methodology.
    Kim Y; Schmit BD; Youm Y
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):485-94. PubMed ID: 16488061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.