BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 20194477)

  • 1. Imaging single molecules using total internal reflection fluorescence microscopy (TIRFM).
    Reck-Peterson SL; Derr ND; Stuurman N
    Cold Spring Harb Protoc; 2010 Mar; 2010(3):pdb.top73. PubMed ID: 20194477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating live cell data using total internal reflection fluorescence microscopy.
    Toomre D
    Cold Spring Harb Protoc; 2012 Apr; 2012(4):439-46. PubMed ID: 22474670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging single molecular motor motility with total internal reflection fluorescence microscopy (TIRFM).
    Reck-Peterson SL; Derr ND; Stuurman N
    Cold Spring Harb Protoc; 2010 Mar; 2010(3):pdb.prot5399. PubMed ID: 20194468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular imaging using total internal reflection fluorescence microscopy: theory and instrumentation.
    Toomre D
    Cold Spring Harb Protoc; 2012 Apr; 2012(4):414-24. PubMed ID: 22474668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alignment and calibration of total internal reflection fluorescence microscopy systems.
    Toomre D
    Cold Spring Harb Protoc; 2012 Apr; 2012(4):504-9. PubMed ID: 22474669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing single molecules in living Dictyostelium cells using total internal reflection fluorescent microscopy (TIRFM).
    Matsuoka S; Miyanaga Y; Yanagida T; Ueda M
    Cold Spring Harb Protoc; 2012 Mar; 2012(3):349-51. PubMed ID: 22383650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total Internal Reflection Fluorescence Microscopy.
    Yildiz A; Vale RD
    Cold Spring Harb Protoc; 2015 Sep; 2015(9):pdb.top086348. PubMed ID: 26330632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule dynamics at the cell cortex probed by TIRF microscopy.
    Grigoriev I; Akhmanova A
    Methods Cell Biol; 2010; 97():91-109. PubMed ID: 20719267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time computation of subdiffraction-resolution fluorescence images.
    Wolter S; Schüttpelz M; Tscherepanow M; VAN DE Linde S; Heilemann M; Sauer M
    J Microsc; 2010 Jan; 237(1):12-22. PubMed ID: 20055915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule imaging of stochastic signaling events in living cells.
    Matsuoka S; Miyanaga Y; Yanagida T; Ueda M
    Cold Spring Harb Protoc; 2012 Mar; 2012(3):267-78. PubMed ID: 22383647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range.
    Lemmer P; Gunkel M; Weiland Y; Müller P; Baddeley D; Kaufmann R; Urich A; Eipel H; Amberger R; Hausmann M; Cremer C
    J Microsc; 2009 Aug; 235(2):163-71. PubMed ID: 19659910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex.
    Konopka CA; Bednarek SY
    Plant J; 2008 Jan; 53(1):186-96. PubMed ID: 17931350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced imaging of cellular signaling events.
    Cebecauer M; Humpolíčková J; Rossy J
    Methods Enzymol; 2012; 505():273-89. PubMed ID: 22289459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in super-resolution fluorescence imaging and its applications in biology.
    Han R; Li Z; Fan Y; Jiang Y
    J Genet Genomics; 2013 Dec; 40(12):583-95. PubMed ID: 24377865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of Ca2+ signaling dynamics in exocrine cells with total internal reflection microscopy.
    Won JH; Yule DI
    Am J Physiol Gastrointest Liver Physiol; 2006 Jul; 291(1):G146-55. PubMed ID: 16484681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new wave of cellular imaging.
    Toomre D; Bewersdorf J
    Annu Rev Cell Dev Biol; 2010; 26():285-314. PubMed ID: 20929313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores.
    van de Linde S; Sauer M; Heilemann M
    J Struct Biol; 2008 Dec; 164(3):250-4. PubMed ID: 18790061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking Movements of the Microtubule Motors Kinesin and Dynein Using Total Internal Reflection Fluorescence Microscopy.
    Yildiz A; Vale RD
    Cold Spring Harb Protoc; 2015 Sep; 2015(9):pdb.prot086355. PubMed ID: 26330626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple color single molecule TIRF imaging and tracking of MAPs and motors.
    Ross JL; Dixit R
    Methods Cell Biol; 2010; 95():521-42. PubMed ID: 20466151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy.
    Tokunaga M; Kitamura K; Saito K; Iwane AH; Yanagida T
    Biochem Biophys Res Commun; 1997 Jun; 235(1):47-53. PubMed ID: 9196033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.