These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20194795)

  • 21. Laboratory studies on secondary organic aerosol formation from terpenes.
    Iinuma Y; Böge O; Miao Y; Sierau B; Gnauk T; Herrmann H
    Faraday Discuss; 2005; 130():279-94; discussion 363-86, 519-24. PubMed ID: 16161789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of ammonia on secondary organic aerosol formation from alpha-pinene ozonolysis in dry and humid conditions.
    Na K; Song C; Switzer C; Cocker DR
    Environ Sci Technol; 2007 Sep; 41(17):6096-102. PubMed ID: 17937287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase Behavior of Hydrocarbon-like Primary Organic Aerosol and Secondary Organic Aerosol Proxies Based on Their Elemental Oxygen-to-Carbon Ratio.
    Mahrt F; Newman E; Huang Y; Ammann M; Bertram AK
    Environ Sci Technol; 2021 Sep; 55(18):12202-12214. PubMed ID: 34473474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of Polycyclic Aromatic Hydrocarbon Oxidation Products in α-Pinene Secondary Organic Aerosol Particles Formed through Ozonolysis.
    Kramer AL; Suski KJ; Bell DM; Zelenyuk A; Massey Simonich SL
    Environ Sci Technol; 2019 Jun; 53(12):6669-6677. PubMed ID: 31125204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ion mobility distributions during the initial stages of new particle formation by the ozonolysis of α-pinene.
    Viitanen AK; Saukko E; Virtanen A; Yli-Pirilää P; Smith JN; Joutsensaari J; Mäkelä JM
    Environ Sci Technol; 2010 Dec; 44(23):8917-23. PubMed ID: 21062070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides.
    Iinuma Y; Böge O; Kahnt A; Herrmann H
    Phys Chem Chem Phys; 2009 Sep; 11(36):7985-97. PubMed ID: 19727505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding interactions of organic nitrates with the surface and bulk of organic films: implications for particle growth in the atmosphere.
    Vander Wall AC; Lakey PSJ; Rossich Molina E; Perraud V; Wingen LM; Xu J; Soulsby D; Gerber RB; Shiraiwa M; Finlayson-Pitts BJ
    Environ Sci Process Impacts; 2018 Nov; 20(11):1593-1610. PubMed ID: 30382275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Second organic aerosol formation from the ozonolysis of alpha-pinene in the presence of dry submicron ammonium sulfate aerosol.
    Zhao Z; Hao J; Li J; Wu S
    J Environ Sci (China); 2008; 20(10):1183-8. PubMed ID: 19143341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting secondary organic aerosol formation from terpenoid ozonolysis with varying yields in indoor environments.
    Youssefi S; Waring MS
    Indoor Air; 2012 Oct; 22(5):415-26. PubMed ID: 22372506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of alpha-pinene + ozone secondary organic aerosol formation at low total aerosol mass.
    Presto AA; Donahue NM
    Environ Sci Technol; 2006 Jun; 40(11):3536-43. PubMed ID: 16786691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organic aerosol yields from α-pinene oxidation: bridging the gap between first-generation yields and aging chemistry.
    Henry KM; Lohaus T; Donahue NM
    Environ Sci Technol; 2012 Nov; 46(22):12347-54. PubMed ID: 23088520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurements of the volatility of aerosols from alpha-pinene ozonolysis.
    Stanier CO; Pathak RK; Pandis SN
    Environ Sci Technol; 2007 Apr; 41(8):2756-63. PubMed ID: 17533835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ozonolysis of beta-pinene: temperature dependence of secondary organic aerosol mass fraction.
    Pathak R; Donahue NM; Pandis SN
    Environ Sci Technol; 2008 Jul; 42(14):5081-6. PubMed ID: 18754351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolating α-Pinene Ozonolysis Pathways Reveals New Insights into Peroxy Radical Chemistry and Secondary Organic Aerosol Formation.
    Zhao Z; Zhang W; Alexander T; Zhang X; Martin DBC; Zhang H
    Environ Sci Technol; 2021 May; 55(10):6700-6709. PubMed ID: 33913707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ozonolysis of α-Pinene and Δ
    Thomsen D; Thomsen LD; Iversen EM; Björgvinsdóttir TN; Vinther SF; Skønager JT; Hoffmann T; Elm J; Bilde M; Glasius M
    Environ Sci Technol; 2022 Dec; 56(23):16643-16651. PubMed ID: 36355568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. OH-initiated heterogeneous oxidation of internally-mixed squalane and secondary organic aerosol.
    Kolesar KR; Buffaloe G; Wilson KR; Cappa CD
    Environ Sci Technol; 2014 Mar; 48(6):3196-202. PubMed ID: 24555558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Secondary organic aerosol from ozonolysis of biogenic volatile organic compounds: chamber studies of particle and reactive oxygen species formation.
    Chen X; Hopke PK; Carter WP
    Environ Sci Technol; 2011 Jan; 45(1):276-82. PubMed ID: 21121662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Highly Oxidized Molecules in Fresh and Aged Biogenic Secondary Organic Aerosol.
    Tu P; Hall WA; Johnston MV
    Anal Chem; 2016 Apr; 88(8):4495-501. PubMed ID: 27000653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols.
    Lee HJ; Laskin A; Laskin J; Nizkorodov SA
    Environ Sci Technol; 2013 Jun; 47(11):5763-70. PubMed ID: 23663151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Secondary organic aerosol production from terpene ozonolysis. 1. Effect of UV radiation.
    Presto AA; Hartz KE; Donahue NM
    Environ Sci Technol; 2005 Sep; 39(18):7036-45. PubMed ID: 16201627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.