These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20195013)

  • 1. Focused ion beam-assisted manipulation of single and double beta-SiC nanowires and their thermal conductivity measurements by the four-point-probe 3-omega method.
    Lee KM; Choi TY; Lee SK; Poulikakos D
    Nanotechnology; 2010 Mar; 21(12):125301. PubMed ID: 20195013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular template assisted growth of ultrathin silicon carbide nanowires with strong green light emission and excellent field-emission properties.
    Xi G; He Y; Wang C
    Chemistry; 2010 May; 16(17):5184-90. PubMed ID: 20309964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-ω technique at low temperatures.
    Lee SY; Kim GS; Lee MR; Lim H; Kim WD; Lee SK
    Nanotechnology; 2013 May; 24(18):185401. PubMed ID: 23575254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K.
    Chiu SP; Chung HF; Lin YH; Kai JJ; Chen FR; Lin JJ
    Nanotechnology; 2009 Mar; 20(10):105203. PubMed ID: 19417513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.
    Schwamb T; Burg BR; Schirmer NC; Poulikakos D
    Nanotechnology; 2009 Oct; 20(40):405704. PubMed ID: 19738310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical conduction mechanisms in natively doped ZnO nanowires (II).
    Tsai LT; Chiu SP; Lu JG; Lin JJ
    Nanotechnology; 2010 Apr; 21(14):145202. PubMed ID: 20215656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependent thermal conductivities of 1D semiconducting nanowires via four-point-probe 3-ω method.
    Lee SY; Lee MR; Park NW; Kim GS; Choi HJ; Choi TY; Lee SK
    Nanotechnology; 2013 Dec; 24(49):495202. PubMed ID: 24231523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires.
    Shen D; Zhan Z; Liu Z; Cao Y; Zhou L; Liu Y; Dai W; Nishimura K; Li C; Lin CT; Jiang N; Yu J
    Sci Rep; 2017 Jun; 7(1):2606. PubMed ID: 28572604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge.
    Wingert MC; Chen ZC; Kwon S; Xiang J; Chen R
    Rev Sci Instrum; 2012 Feb; 83(2):024901. PubMed ID: 22380117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites.
    Li Y; Huang X; Hu Z; Jiang P; Li S; Tanaka T
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4396-403. PubMed ID: 22008305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures.
    Xi G; Liu Y; Liu X; Wang X; Qian Y
    J Phys Chem B; 2006 Jul; 110(29):14172-8. PubMed ID: 16854116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts.
    Habicht S; Zhao QT; Feste SF; Knoll L; Trellenkamp S; Ghyselen B; Mantl S
    Nanotechnology; 2010 Mar; 21(10):105701. PubMed ID: 20154367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-temperature stability of silicon carbide nanowires.
    Shim HW; Kuppers JD; Huang H
    J Nanosci Nanotechnol; 2008 Aug; 8(8):3999-4002. PubMed ID: 19049165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unprecedented Piezoresistance Coefficient in Strained Silicon Carbide.
    Cui J; Zhang Z; Liu D; Zhang D; Hu W; Zou L; Lu Y; Zhang C; Lu H; Tang C; Jiang N; Parkin IP; Guo D
    Nano Lett; 2019 Sep; 19(9):6569-6576. PubMed ID: 31381357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical conduction mechanisms in natively doped ZnO nanowires.
    Chiu SP; Lin YH; Lin JJ
    Nanotechnology; 2009 Jan; 20(1):015203. PubMed ID: 19417245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of thin-film-fracture-based nanowires into microchip fabrication.
    Jebril S; Elbahri M; Titazu G; Subannajui K; Essa S; Niebelschütz F; Röhlig CC; Cimalla V; Ambacher O; Schmidt B; Kabiraj D; Avasti D; Adelung R
    Small; 2008 Dec; 4(12):2214-21. PubMed ID: 18972459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous heat conduction behavior in thin finite-size silicon nanowires.
    Yang X; To AC; Tian R
    Nanotechnology; 2010 Apr; 21(15):155704. PubMed ID: 20332560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Color-tuned highly fluorescent organic nanowires/nanofabrics: easy massive fabrication and molecular structural origin.
    An BK; Gihm SH; Chung JW; Park CR; Kwon SK; Park SY
    J Am Chem Soc; 2009 Mar; 131(11):3950-7. PubMed ID: 19249839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of ultralong SiC nanowires with unique optical properties, excellent thermal stability and flexible nanomechanical properties.
    Hu P; Dong S; Zhang X; Gui K; Chen G; Hu Z
    Sci Rep; 2017 Jun; 7(1):3011. PubMed ID: 28592859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.