These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 20195477)

  • 41. A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK.
    Pei ZM; Ward JM; Harper JF; Schroeder JI
    EMBO J; 1996 Dec; 15(23):6564-74. PubMed ID: 8978683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Inhibitory effect of cholesterol on changes in membrane permeability and potential induced with lysolecithin in red blood cells (author's transl)].
    Shinozawa S; Araki Y; Utsumi K
    Nihon Yakurigaku Zasshi; 1978 Mar; 74(2):297-302. PubMed ID: 658841
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of extracellular Ca2+, K+ and OH- on erythrocyte membrane potential as monitored by the fluorescent probe 3,3'-dipropylthiodicarbocyanine.
    Pape L
    Biochim Biophys Acta; 1982 Apr; 686(2):225-32. PubMed ID: 7082665
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spin label study of erythrocyte deformability. Ca2+-induced loss of deformability and the effects of stomatocytogenic reagents on the deformability loss in human erythrocytes in shear flow.
    Noji S; Taniguchi S; Kon H
    Biophys J; 1987 Aug; 52(2):221-7. PubMed ID: 2822161
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Rubidium permeability through Ca2(+)-activated potassium channels in human erythrocytes].
    Zahradníková A; Zahradník I
    Bratisl Lek Listy; 1990 Mar; 91(3):202-7. PubMed ID: 2340419
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of Vibrio parahaemolyticus haemolysin on human erythrocytes.
    Lang PA; Kaiser S; Myssina S; Birka C; Weinstock C; Northoff H; Wieder T; Lang F; Huber SM
    Cell Microbiol; 2004 Apr; 6(4):391-400. PubMed ID: 15009030
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures.
    Krueger M; Thom F
    Biophys J; 1997 Nov; 73(5):2653-66. PubMed ID: 9370459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microscopic Monitoring of Erythrocytes Deformation under Different Shear Stresses Using Computerized Cone and Plate Flow Chamber: Analytical Study of Normal Erythrocytes and Iron Deficiency Anemia.
    Elblbesy MA
    Biomed Res Int; 2018; 2018():6067583. PubMed ID: 30474040
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A flow-activated chloride-selective membrane current in vascular endothelial cells.
    Barakat AI; Leaver EV; Pappone PA; Davies PF
    Circ Res; 1999 Oct; 85(9):820-8. PubMed ID: 10532950
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamic modeling for flow-activated chloride-selective membrane current in vascular endothelial cells.
    Qin KR; Xiang C; Cao LL
    Biomech Model Mechanobiol; 2011 Oct; 10(5):743-54. PubMed ID: 21069414
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure and deformation properties of red blood cells: concepts and quantitative methods.
    Evans EA
    Methods Enzymol; 1989; 173():3-35. PubMed ID: 2674613
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of red blood cell motion through cylindrical micropores: effects of cell properties.
    Secomb TW; Hsu R
    Biophys J; 1996 Aug; 71(2):1095-101. PubMed ID: 8842246
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stretch response of the mechano-gated channel TMEM63A in membrane patches and single cells.
    Niloy SI; Strege PR; Hannan EC; Cowan LM; Linsenmeier F; Friedrich O; Farrugia G; Beyder A
    Am J Physiol Cell Physiol; 2024 Feb; 326(2):C622-C631. PubMed ID: 38189136
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detachment of agglutinin-bonded red blood cells. III. Mechanical analysis for large contact areas.
    Berk D; Evans E
    Biophys J; 1991 Apr; 59(4):861-72. PubMed ID: 2065190
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activation of red cell Ca2(+)-activated K+ channel by Ca2+ involves a temperature-dependent step.
    Varecka L; Peterajová E
    FEBS Lett; 1990 Dec; 276(1-2):169-71. PubMed ID: 2265697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of calcium permeabilization and membrane-attached hemoglobin on erythrocyte deformability.
    Friederichs E; Farley RA; Meiselman HJ
    Am J Hematol; 1992 Nov; 41(3):170-7. PubMed ID: 1415191
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diffusion-convection effects on drug distribution at the cell membrane level in a patch-clamp setup.
    Baran I; Iftime A; Popescu A
    Biosystems; 2010; 102(2-3):134-47. PubMed ID: 20851737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Force balance and membrane shedding at the red-blood-cell surface.
    Sens P; Gov N
    Phys Rev Lett; 2007 Jan; 98(1):018102. PubMed ID: 17358508
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell.
    Parker KH; Winlove CP
    Biophys J; 1999 Dec; 77(6):3096-107. PubMed ID: 10585931
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pathophysiology of red cell volume.
    Browning JA; Ellory JC; Gibson JS
    Contrib Nephrol; 2006; 152():241-268. PubMed ID: 17065816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.